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NUMERICAL STUDY OF THE INFLUENCE OF THE LENGTH OF
A ROD ON ITS CRITICAL FORCES

S. Bekshaev!
10dessa State Academy of Civil Engineering and Architecture

Abstract: The effect of changing the length of a longitudinally compressed rod on its critical
forces is numerically investigated. The research is carried out on the example of a two-span rectilinear
rod of bending stiffness constant along length, which is compressed by a constant lengthwise
longitudinal force and hinged on one of the ends on an absolutely rigid support, and inside - on a
support of finite stiffness. The change in the length of the rod occurs due to the movement of the end
hinge support with the corresponding increase or decrease of the adjacent section of the rod without
changing the position and characteristics of the remaining constraints. The dependence of the critical
forces of the rod on the position of this support and, accordingly, on the length of the adjacent
compressed section of the rod is investigated. Calculations are performed on the basis of the use of
known exact analytical expressions of the influence functions of a rod of constant cross-section
compressed by a longitudinal force constant by length. In the considered examples, qualitative signs of
increase, decrease, and extremum of simple critical forces when changing the length of the rod, related
to the qualitative features of the corresponding buckling forms, established earlier theoretically, were
fully confirmed. In particular, exact calculations have shown that the increase or decrease of the
simple critical force when the length of the fragment of the rod adjacent to the movable support is
changed is determined by the type of the corresponding buckling form in the neighborhood of this
support. Different possible configurations of buckling forms are considered, and the behavior of
critical forces when changing the length of the rod are considered for each of the configurations. In
order to verify the previously established theoretical results, which relate to the study of the behavior
of not only the main critical forces, but also higher simple critical forces, which have an arbitrary
number in the spectrum, the calculations are carried out in the article for the second critical forces of
the rods considered in the given examples. The results of the calculations are shown in the form of
graphs, which represent configurations of buckling forms of various possible types in connection with
the corresponding changes in critical forces. Graphs of the dependence of the second critical force of
the studied rods on their length are also given. It has been demonstrated that under certain conditions,
reducing the length of the rod can lead to a reduction in its critical force.

Keywords:. compressed rod, change of critical force, buckling form, effect of length change,
qualitative sign.

YU CEJBbHE JOCJIIKEHHS BIIVIUBY JOBXKHNHU CTPUKHS
HA MOI'O KPUTUYHI CUJIN

Bekmaes C. 5.
Y00ecvra oeparcasna axademis byodisnuymea ma apximexmypu

AHoTanis: YncensHo JOCHIKY€ETHCS BIUTUB 3MiHH JTOBKMHH TO310BXXHBO CTUCHYTOTO CTPHIKHS
Ha HOro KpHTUYHI cvid. JlOCHiPKeHHsI BUKOHYETHCSI Ha TPUKJIIAJi JIBOMPOTIHHOTO MPSMOIIHIHHOTO
CTPMKHS TTOCTIMHOT 3a IOBXUHOKO 3T1HHOI JKOPCTKOCTI, SIKMH CTHCKAETHCS MOCTIHHOI 10 JOBXKHUHI
MO3/I0BKHBOIO CHJIOKO 1 IAPHIPHO CHHMPAETHCS HA OJHOMY 3 KiHLIB Ha a0COIOTHO >KOPCTKY OMOpY, a
BCEPEIMHI — Ha ONOPY CKIHYEHOI OPCTKOCTi. 3MiHA JOBXHHU CTPHXKHS BiOyBa€ThCS 3a PaxyHOK
MEePEMIIIEHHS KIHIIEBOI IIAPHIPHOT ONOPH 3 BIAMOBIAHUM 30UIBIICHHSIM 200 3MEHIIEHHSAM IPUIIETIIOTN
IOUISHKA CTpWXHS 0e3 3MIHM IIOJIOKEHHA 1 XapaKTEpUCTHK PELITH 3aKpimieHb. JlocmiukyeTbes
3aJIeKHICTh KPUTUYHHX CUJ CTEPXKHS BijJ TIOJNOKEHHs 1€l OMOpW 1, BIAMOBITHO, BiJ JOBXKHUHHU
MPUJIETIIOl CTUCHYTOI IUISTHKU CTEepKHS. PO3paxyHKH BUKOHYIOThCS HA OCHOBI BUKOPHCTAHHS BIJIOMHX
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TOYHMX AaHAJTITUYHUX BUPa3iB (YHKOIH BIUIMBY CTPWXKHA MOCTIHHOTO IONEPEYHOTO Mepepizy,
CTUCHYTOTO IOCTIIIHOIO IO MOBXUHI IO3J0BXHBOIO CHJIOK. Y PO3INIHYTHUX OKPEMHX IPHUKIANAX
BHSBIIEHO 1 ITUIKOM MiATBEPIKEHO SAKICHI O3HAKW 3POCTAHHS, 3MEHIIEHHS Ta €KCTPEMyMa IpPOCTHX
KPUTUYHUX CHJI MPH 3MiHi TOBKMHH CTEP)KHS, MOB'S3aHi 3 AKICHUMH OCOOJHMBOCTSMH BiJIOBITHHX
¢opM BTpaTH CTIMKOCTi, BCTAaHOBJICHI paHillle TEOPETHYHO. 30KpeMa, TOYHHMH pPO3paxyHKaMHU
IIPOAEMOHCTPOBAHO, 1[0 3POCTaHHSA a00 3MEHILIEHHS NMPOCTOI KPUTHUYHOI CHJIM IPU 3MiHI AOBXHUHHU
JUISTHKY CTEPIKHSI, L0 MPUIIATAE A0 TIEPEMILlyBaHOI OMOPH, BU3HAYAIOTHCS BUJOM BiAMOBiAHOI hopMu
BTpaTH CTIHKOCTI B OKOJi Ili€l omopu. Po3rmsmaroTbes pi3HI MOXKIUBI KOHbirypamii ¢opMm BTpaTu
CTIMKOCTI Ta IOBEiHKA KPUTHYHUX CHJI TIPY 3MiHI JOBXUHU CTEPXKHS I KOXKHOI 3 KOH(irypariii. 3
MeTor0 Bepudikamii paHime BCTAHOBICHHX TEOPETHYHUX PE3yNbTaTIiB, SIKI CTOCYIOThCS BHBUCHHS
MOBEJiHKM HE TiNbKM OCHOBHUX KPUTHYHHMX CHI, a i BUIIMX MPOCTUX KPUTUYHUX CHJ, SIKi MarOTh
JOBIIBHUH HOMEpP B CHEKTpi, B CTAaTTi PO3PaxXyHKH HPOBOIATHCA ISl OPYTUX KPUTUUHUX CHII
CTPIDKHEH, pO3MISHYTMX Yy HaBEACHUX MpHUKIazax. Pe3ynpTatu NpOBEIEHHUX PO3PaxyHKIB
MPOJEMOHCTPOBaHiI y BUTIAAL rpadikiB, SKi HMPeACTaBISIOTh KOHGIrypamii ¢opM BTpaTH CTiHKOCTI
PI3HUX MOXIMBHUX THIIIB y 3B’A3KY 3 BiANOBIJHMMH 3MiHAMH KPUTHYHUX CHJ. Tako HaBeIeHi
rpadiky  3aJeXHOCTI APYroi KPUTHYHOI CHIM [OCHIIPKYBAaHMX CTEpP)KHEH BiI I1X JOBKHHU.
[IponeMoHCTpOBaHO, IO 3a IMEBHUX YMOB 3MCHIICHHS JOBXHHHM CTEPXKHS MOXKE MPUBECTH 0
3MEHILEHHS HOI0 KPUTUYHOI CUJIH.

Kuaro4oBi cjioBa: cCTHCHYTHH CTepKeHb, 3MiHA KPUTUYHOI CHUTH, (hOpMa BTpaTH CTIHKOCTI, BILTHB
JIOBXKHHH, SIKICHA O3HAKa.
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1 INTRODUCTION

When designing and operating engineering structures containing longitudinally
compressed elements, ensuring their stability is of great importance. In this case, as a rule, it
is accepted, often without proper verification, that a shorter rod is more stable, i.e. has a
higher critical force at which its loss of stability occurs. Although in most cases this
assumption is satisfied, the issue of the relationship between the length of a compressed rod
and its stability deserves more careful study, since engineering decisions made on its basis can
lead to accidents or serious disruptions to the operation of the structure, making its safe
operation impossible.

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT

Under standard support conditions, the critical forces of longitudinally compressed rods,
as a rule, decrease with increasing their length, i.e. when adding additional compressed
sections at the ends of the rod and transferring the end supports to the ends of the formed
elongated rod. However, as noted in a number of studies [1 — 3], with some ways of support,
in particular in the presence of elastic pinches and/or intermediate elastic supports, reducing
the length of the rod can lead to a decrease in critical forces and the risk of loss of stability. In
this regard, of great theoretical and practical interest is the question of determining the
conditions for the increase or decrease of the critical forces with a change in the length of the
rod, as well as of determining the optimal length of the rod at which its critical forces reach its
extremal value. This issue was subjected to a fairly detailed theoretical study in the author's
work [3], where a straight rod was considered, hinged at one of the ends on an absolutely rigid
support, and the change in length occurred due to the moving of this support and the
corresponding lengthening or shortening of the adjacent section of the rod. The disadvantage
of the work [3] is that, despite a fairly detailed theoretical justification of the results obtained
in it, they were not illustrated with specific examples. At the same time, since these results are
neither trivial nor obvious, it would be very desirable to provide examples that would confirm
their validity.

3 THE PURPOSE AND OBJECTIVES OF THE STUDY

The purpose of the work is to numerically study the behavior of the critical force of a
compressed rod when its length changes and to determine the signs of growth, decrease and
extremum of the critical force using the example of a two-span rod of constant cross-section
along the length, compressed by a constant longitudinal force along the length and supported
by an intermediate support of finite rigidity. Note that the results of work [3] were established
for a rod with variable bending stiffness along the length without limitations on the number
and rigidity of intermediate supports. In addition, since in [3] a change in a critical force
arbitrary in number in the spectrum was considered, the present article examines the behavior
of the second critical force as a task that is less trivial compared to the case of the main
critical force.

4 RESEARCH RESULTS

4.1. Preliminary results. First, we present the main results of the article [3], in which
their proof can be found.

We consider a rod hinged at one of its ends on a rigid support and compressed by a
longitudinal force constant along its length (at least within a certain area adjacent to this
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support). Forms of buckling that correspond to its critical forces (of any number) can be of
five types (see Fig. 1).

—3 R A 2 2

type 1 type 2 type 3 type 4 type 5

Fig. 1. Different types of buckling forms

The form of the 1st type in the neighborhood of the end support is concave towards the
axis of the undeformed rod. In the type 2 form, the convexity faces this axis. Type 3 form has
a horizontal tangent at the end support. Forms of the 4th and 5th types in some area adjacent
to the end support have straight segments, i.e. are semi-curved. Examples of the
implementation of forms of all five types are considered in [1 — 9]. The following six
theorems establish qualitative signs of the increase or decrease of critical forces with a change
in the length of the rod.

Theorem 1. A simple critical force, which corresponds to the form of the 1st type,
decreases as the rod lengthens, provided that the reaction of the support is opposite to the
deflections of the rod in the neighborhood of the support.

Theorem 2. The simple critical force corresponding to the type 2 form increases as the
rod lengthens.

Theorem 3. Simple critical force, which corresponds to the form of the 3rd type,

a) decreases both when the rod is shortened and when the rod is lengthened, if, with rigid
clamping of the end section, its number in the spectrum does not change and it remains
simple,

b) increases both with shortening and lengthening of the rod, if this number decreases
and it remains simple,

c) increases with shortening and decreases with lengthening of the rod, if it becomes
double (i.e., after pinching, it corresponds to two numbers - the same one and one less).

Theorem 4. The simple main critical force when moving the end support reaches a
maximum if it corresponds to a type 3 shape.

Theorem 5. The simple critical force, which corresponds to the form of the 4th type (half-
curved), increases with elongation and decreases with shortening of the rod.

Theorem 6. The simple critical force, which corresponds to the type 5 form (half-curved),
does not change when the rod is lengthened or shortened.

4.2. Numerical verification. We will demonstrate the validity of the established results
using the example of a rod with bending rigidity EJ constant along its length, reinforced with
an intermediate elastic support (Fig. 3 a).
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a) b)

Fig. 2. A rod, the second form of which is the form of the 3rd type when ¢=5,605-c,, P, =5120-P;
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For this case, explicit expressions for the influence functions of the compressed rod and
exact equations of critical forces for standard support conditions are known [10], using which
we find that when the support is installed at a distance of 0,4¢ from the left support and with

its rigidity equal to ¢ =5,605-c,, where ¢, =n°EJ/¢*, the second critical force is equal to
P, =5,120-P., where P. =x’EJ/¢?, and it corresponds to the form of the 3rd type (Fig. 3 b).

As calculations show, the 2nd critical force of a single-span rod, hinged at one end and rigidly
clamped at the opposite end, is equal to 6,047-P.. When introducing an intermediate

support, it will become larger. It follows that the rigid clamping of the right end of the rod in
Fig. 2 a will make his second critical force first, i.e. we are dealing with case b) of Theorem 3.

Al=-0]1-, P,=5268- P Al=0, P,=5120"P; Al=0]1-0, P,=5,156-P;
0.05 \\ ds 0 35/6,4;""‘0 05 o 095 |t
\ -0.01 // /
0.7 0.75 0.8 0.85 e
a) b) c)

Fig. 3. The end fragment of the 2nd form of the rod shown in Fig. 2 a, when changing its length

Fig. 3 shows the end fragments of the second forms of the original rod, as well as rods
shortened and extended by A¢=0,1¢ (of types 1 and 2, respectively). Nearby are indicated

the corresponding values of the 2nd critical force, exceeding P,=5,120-P., in full

accordance with Theorem 3.
The elongation of the original rod is accompanied by an increase in the 2nd critical force
until it reaches a maximum equal to P, . =5,185-PF., at a length equal to 1,184¢. The

corresponding forms are shown in Fig. 4.

Al=01-{, P,=5]156-Pg Al=0184:4, P,=5]185-P, Al=02-f, P,=5183-P
Y. ot o ———
o obs | 1 IVIT—_ 115 = I s
002 001 / .01
a) b) c)

Fig. 4. Perturbations of the second buckling form of the 3rd type of rod shown in Fig. 3 a, with a length equal to
1,184/

Note that now a single-span rod clamped at one end has a second critical force equal to
6,047-PE/1,1842 =4,317-P., so that the considered critical force achieved as a result of
installing an intermediate support will be the second in the spectrum and, thus, case a) of
Theorem 3 is realized.

Graph of change in P, with change in length for the rod in Fig. 3 a is shown in Fig. 5 a,
where the elongation of the rod is plotted horizontally in fractions of the original length 7,
and the ratio P,/P. is plotted vertically.
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Fig. 5. Graphs of the dependence of the 2nd critical force on the length of the rod. The horizontal line shows
the elongation in fractions of the length ¢ of the original rod, the vertical line shows the ratio P, /Pg

To illustrate case c) of Theorem 3, consider a rod rigidly clamped at one end with an
elastic support in the middle (Fig. 6 a).

? P
2 s 0 2 4 de !
0.5¢ Z%’C 7%’ \\_//
g N 0.2
a) |

b)

Fig. 6. Rod, the second buckling form of which is the form of the 3rd type when ¢ =6,7-C, ,
P, =8,183-P..

With a support stiffness coefficient equal to ¢=6,700-c,, the second buckling form has

zero slope at the right end (see Fig. 6 b) and the clamping makes the corresponding critical
force equal to P, =8,183-P., double (the intermediate support is in the node of the second
buckling form of a single-span rod rigidly clamped at both ends). The results of calculations
of the 2nd critical force and the corresponding buckling forms when changing the length are
presented in Fig. 7, from which it is clear that both elongation and shortening change the type
of form from 3rd to 1st, which in this case, in accordance with Theorem 1, is a sign of a
decrease in the critical force with increasing length of the rod.

Al=-01-f, P,=8297P; Al=0 P,=8183 P Al=01-£, P,=8,076-P;

0.007
0.01 / \\ 0.8 0. V(""O 95 //"ﬁ\\
&4 0J75 .8 085 / 0.9 095 It 1405
-0.02

r -0.007

a) b) c)

Fig. 7. The end fragment of the 2nd buckling form of the rod shown in Fig. 6 a, when its length changes

Fig. 5 b shows a graph of the dependence of the 2nd critical force for this case on the
length of the rod. As can be seen, the behavior of the critical force completely follows
Theorem 3.
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The 4th type buckling form is implemented for the rod shown in Fig. 6 a, with a support
stiffness coefficient equal to c¢=11233.c,, and a second critical force equal to

P, =10,530-P. (Fig. 8 b).

Al=-015-¢, P,=9510-P; Al=0 P, =10,530 - Py AL=025-4, P,=11823-F;
()\.2 d4 de~—7s 0\1 4 (6/l£/ ov.s i
-0.1 N _// " \ 7 0.1 //
a) b) c)

Fig. 8. Perturbations of the 2nd form of the 4th type of rod shown in Fig. 7 a, when its length changes,
c=11233-c,

Fig. 8 a and c also show the buckling forms of rods shortened by A/=0,15-/ and
extended by A/=0,25-/, both of the 2nd type, which, according to Theorem 2, is a sign of an

increase in the critical force along with the length of the rod, which is confirmed by direct
calculation (the corresponding values P, are given above the curves). A graph of the

dependence of P, on the length of the rod for this case is presented in Fig. 5 c.

All calculations and graphs are performed using Mathcad based on exact equations of
critical forces, obtained on the basis of exact analytical expressions of the influence functions
of a compressed prismatic rod supported by an intermediate elastic support. Forms in Fig. 2 —
8 are normalized so that the reaction of the elastic support is equal to 1. The ordinates of the
forms are showed in fractions of the magnitude 1/c, = ¢°/n°EJ .

5 RESEARCH RESULTS DISCUSSION

The results of calculations performed for specific examples presented in the article fully
confirm the theoretical conclusions established earlier in the article [3]. Their validity has
been established for various combinations of parameters of the considered models, in which
different variants of the behavior of critical forces are realized when the length of the rod
changes

6 CONCLUSIONS

The work obtained results that allow a deeper and more complete understanding of the
behavior of the critical forces of a straight rod, hinged at one of the ends on a rigid support,
when the length of the rod changes due to change of the fragment adjacent to this support. It
has been established that the behavior (increase or decrease) of simple critical forces when the
length of the rod changes is associated with the configuration of the corresponding forms of
buckling in the neighborhood of the moving support. The results obtained can be used in the
design and operation of engineering structures containing elements subject to longitudinal
compression.
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