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PERTURBED MOTIONS OF A NEARLY DYNAMICALLY
SPHERICAL RIGID BODY WITH A MOVABLE MASS SUBJECT
TO CONSTANT BODY-FIXED TORQUE

D. Leshchenko?!, T. Kozachenko?
'Odesa State Academy of Civil Engineering and Architecture

Abstract: The problem of motion of a rigid body about a fixed point is one of the classical
problems of mechanics. The interest to the problems of the rigid body dynamics has increased in the
second half of the XX century in connection with the development of rocket and space technologies. A
spacecraft or satellite, while orbiting about its center of mass, experiences torques from forces of
diverse physical nature. This includes torques generated by the motion of internal masses, which can
arise from factors such as presence of rotating components (like rotors or gyroscopes), and the
activities of crew members aboard the crew vehicle. The dynamics of rigid body incorporated moving
masses is a significant focal point in classical mechanics. Extensive research is dedicated to
investigating the rotation of a rigid body featuring motion of internal masses. It is assumed that the
body contains a viscoelastic element that is modeled by a moving mass connected to the body by a
strong damper. The moving mass model loosely attached elements in a space vehicles, which can
significantly affect the vehicle’s motion about its center of mass during a long period of time. Some
cases are considered of the motion of a rigid body containing internal masses connected to the body by
means of elastic and dissipative elements. A number of works are devoted to the analysis of various
problems of the dynamics of space vehicles containing internal movable masses.

The paper develops an approximate solution by means of averaging method to the system of
Euler’s equation terms for a nearly dynamically spherical rigid body containing a viscoelastic element
under the action of constant body-fixed torque. We obtained the system of motion equations in the
standard form which refined in square-approximation by small parameter. Asymptotic approach
permits to obtain some qualitative results and to describe evolution of angular motion using simplified
averaged equations and numerical solution. The main objective of this paper is to extend the previous
results for the problem of motion about a center of mass of a rigid body under the influence of small
internal torque (cavity filled with a fluid of high viscosity) or external torque (resistive medium). The
importance of the results is in progress of moving mass control motion of spinning projectiles.

Keywords: nearly dynamically spherical rigid body, moving mass, constant torque.

3BYPEHI PYXU BJIM3BKOI'O 10 JUHAMIYHO COEPUYHOI'O
TBEPJIOI'O TIJIA 3 PYXOMOIO MACOIO ITIJA AI€IO
MNOCTIMHUX MOMEHTIB B 3B’I3AHHUX 3 TIJIOM OCSIX

Jlemenxo JI. JI.}, Ko3auenxo T. O.}
'00ecvra depacasna axademis 6ydisnuymea ma apXximexnypu

Anotanin: TIpoGiema pyxy TBEpOro Tijia BiTHOCHO HEPYXOMOI TOYKU € OJIHIEI0 3 KIACUIHUX
3aJad MexaHiku. [HTepec Mo 3amad AWHAMIKM TBEPAOTO TiJla MOCHIMBCSA B APYTid momoBuHi XX
CTOPIYYS B 3B’ 3Ky 3 PO3BHTKOM PaKETHO-KOCMIYHOI TEXHIKH.

KocMmiunmii kopabesnb ab0 CYNMYyTHHK B CBOEMY pyCi BIIHOCHO IIGHTpa Mac 3a3HAa€ BILIUB
MOMEHTIB cHJI pi3HOI (izn4yHOl npupomu. Lle, HaNpUKIIaa, MOMEHTH, BHKJIMKAHI PyXOM BHYTPIIIHIX
Mac, sIKi MOXYTh BUHHKATH Yepe3 Taki (paKTOpH, SK HasBHICTh 00EPTOBHX KOMIOHEHTIB (POTOPIB,
TipPOCKOMIB), @ TAKOXK MEPEMIILIEHHSIM eKiMaXXy B BUMAJKY MiJIOTOBaHOTO anapary. /J[uHamika TBepaoro
TiJIa 3 PyXOMHUMH MacaMmy 1€ BaXJI1Ba MpodjieMa KIacCMYHOI MEXaHIKH.
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Benuka xinpkicTh poOIT MpHCBSYEHA AOCIIIKEHHIO OOEpTaHHS TBEPAOrO Tijia 3 PYXOMHMHU
MacaMH, 3 TPYKHHMH Ta JUCHIIATUBHUMH ejleMeHTaMH. [Ipuimyckaerscs IO TIIO MICTUTH
B’ I3KOIPYKHUI €JIEMEHT, SIKUIl MOZETIOETHCS PyXOMOI MAacol0 3’ €HAHOI0 AEMII(EPOM 3 KOPIIYCOM.
HasiBHICTD pyXOMOi Macu MOJICITIOE TIPUCYTHICTh HEXOPCTKO 3aKPITUICHUX €JIEMEHTIB Ha KOCMIYHOMY
amaparti, 10 [IPHU TPUBAJIOMY IMEPiOAl Yacy Ma€ CyTTEBHU BIUIMB Ha HOTrO pyxX BIIHOCHO IIEHTPa Mac.
Psin myOuikariiii MpuCBsSYEHO aHai3y PI3HUX MPOOJeM JAWHAMIKM KOCMIYHUX arapariB, M0 MiCTSTh
BHYTpIIIHI pyxomi Macu. BuBuamuce mpoOneMu CTIMKOCTI Ta HECTIHKOCTi, a TakoX Mpodiemu
KepyBaHH: 1 cTabimizalii pyxiB.

B crarri mpoBereHe acHMNITOTHYHE pO3B’S3YBaHHS 3a JOMOMOTOI0 METONY YCepeTHEHHS
cucteMH piBHsHB Eiinepa 3 10JaTKOBUMHU 30YpIOIOYMMH MOMEHTaMH JJisi OJM3BKOTO A0 AUHAMIYHO
c(hepryHOro TBEPAOro Tija 3 B’SA3KOMPYKHUM €JIEMEHTOM IIiJ] €0 CTaJOr0 MOMEHTY B 3B’SI3aHHX 3
TizioM ocsix. OfiepkKaHO CUCTEMY PIBHSHB PyXY B CTaHAApTHil QopMi, sika yTOUHEHa B KBaIPATUIHOMY
HaOJMDKEHH1 33 MaJIUM [apaMeTPOM.

3a JI0MOMOro0 acCHMMITOTHYHOIO IMiAX0AY OCpaHi SKiCHI pe3y/IbTaTd Ta OMKMCaHa C€BOJOIiS
pyXy Tina 3 JOMOMOTOI0 yCepeJHEHHX DIBHSIHB i YHCEIBHOrO IHTETrpyBaHHs. B poOoTi po3BHHYTI
pe3ybTaTH IOCTiIKEHb OMEPeaHIX 3a/1a4, PO3rIITHYTHX aBTOPaMH, PO PyX TBEPAOro Tija Hix €0
MOMEHTIB, 00YMOBJICHHX MOPOKHHHOIO 3 PIAMHOI0 BENHMKOI B’SI3KOCTI 200 CEepeloBHINA 3 OMOPOM.
Opneprkani pe3yabTaTH BaXXJIMBI B MPOLIEC YIIPABIIHHS PYyXOM Tijia 3 Macoro abo it pyXiB 00epTOBHX
CHapsIIB 3 Macolo.

KiouoBi ciioBa: 61m3bKe 710 JUHAMIYHO C(EpUYHOTO TBEPIE TLIO, pyXOoMa Maca, MOCTiIHHUHA
MOMEHT.
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1 INTRODUCTION

The analysis of objects containing elements with distributed and lumped parameters is of
interest both from the theoretical points of view. Constructive results for systems containing
quasi-rigid bodies have been obtained. These models assume that the motion is close to the
motion of perfectly rigid bodies. The influence of nonidealities can be taken into account
using asymptotic methods of nonlinear mechanics. It is reduced to including additional
disturbing torques in the Euler equations of the angular motion of a fictitious rigid body. The
dynamics of the motion of rigid bodies with internal degrees of freedom were studied in
number of publications.

2 ANALYSIS OF LITERATURY DATA AND RESOLVING THE PROBLEM

The dynamics of a rigid body incorporating moving masses is a significant focal point in
classical mechanics. Extensive research is dedicated to investigating the rotation of a rigid
body featuring motion of internal masses. A number of problems in the indicated field and the
works in this direction are described in [1-8].

In [1, 9], scenarios involving the motion of a rigid body containing movement of internal
masses are explored. Several problems concerning the motion of a rigid body incorporating
elastic and dissipative components are investigated in [10-13]. [14] tackled the issue of
minimum-time deceleration in a resistant medium for the rotation of a dynamically symmetric
rigid body containing a viscous-elastic element. [15] focused on the challenge of achieving
quasi-optimal time-based deceleration for a gyrostat featuring a moving mass in a medium
with resistance.

In [16] the influence is estimated of the moving point masses (linear oscillations) on the
stability of uniform rotation of the Lagrange top.

Paper [17] delved into the motion of a rigid body that is close to dynamically spherical,
and houses a cavity filled with a highly viscous fluid. In [18], researchers explored the motion
of a nearly dynamically spherical rigid body, also with a cavity containing viscous fluid but at
a low Reynolds member. They provided insights into both the qualitative and quantitative
aspects of its motion in a resistive medium. [19] focused on the motion about the center of
mass of a nearly dynamically spherical rigid body with a cavity filled with highly viscous
fluid, which was subjected to constant body-fixed torque. The motion of a nearly dynamically
spherical rigid body with highly viscous fluid under the action of constant body-fixed torques
is investigated in [20].

In [21] qualitative and quantitative results of motion of a nearly dynamically spherical
rigid body with a moving mass attached to the body by means of elastic coupling were
presented. Paper [22] extended the investigation of rigid body motion presented in [17] by
adding another (third) component of the gyrostatic moment. In [23] the results of [17] was
generalized to charged rigid body.

The paper [24] study the motion about the center of mass of a nonsymmetric rigid body
influenced by two small perturbation torques: a constant one in the body-fixed axes and a
linear dissipative one depending on the angular velocity.

In the works [25, 26] analytical solutions are obtained for the problem of a rigid body by
a torque which is constant in the body-fixed axes.

In paper [27], the analytic solution has been introduced for the rotation of a rigid body
having spherical ellipsoid of inertia subjected to a constant torque.

Let us examine the motion of a dynamically asymmetric rigid body about its center of

inertia, featuring a movable point mass m connected via an elastic linkage to a point O,

located on one of its principal axes of inertia. We assume that the torques which is constant in
the body-connected axes have the form

D. Leshchenko, T. Kozachenko
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M? =&*M, =const, i=1,2,3 1)

where 0 < & <<1 is a small parameter.
The origin of Cartesian coordinate system, connected with the rigid body, is placed at the

center of inertia of the body with point mass, whereas the basic vectors ¢, €,,€, of the system
are directed so that vector e, coincides with axes on which point O, is located. Then radius-

vector of point O,, p =pe, where, we assume p > 0.

In references [1, 9], a vector equation was derived to describe the alteration of the vector
® within the coordinate system linked to the body.

Jo-o+(0-J7-0) = D)+ O(Q* 1*Q°) (2)

Here J, denotes the inertia tensor of a rigid body containing a moving mass when
referenced with respect to point O, o is the absolute angular velocity of the body, vector
function @ includes the terms of the orders of Q7 and AQ™. The quantities
Q* =c/m, L =38/m, characterize the frequency and decay time of free oscillations, ¢ is a

stiffness coefficient, and & is a viscous friction coefficient.
Perturbation torques in (2) are small, provided

Q0 2ol o 3)

Free oscillations of the system decaying long time before the body performs one
revolution [1, 9].

To obtain equations (2) and assess their level of error, you can refer to [1, 9]. Function
@(w) isa polynomial containing the fourth and fifth order of o [1, 9].

Having evaluated the vector function @ as per [1, 9], the equation (2) for our problem,
when expressed in terms of projections on axes e, e,, e,, takes the shape

dp

A—F
dt

+(C-B)ar =-p’m{Q7qr(Q p* +K,q* + Lr*) +
+ Q7 p[q* (M, p* + N,g° + Rr?) +r3(S,p° +T,r*)] + &°M,

Bz—?+(A—C)pr=_p2m{Q2pr(Q2q2+K2p2+LZr2)+ "
4
+2Q7q[r* (M,0° + N,r* + R, p*) + p*(S,0° +T,p*)] +&°M,

C%JF(B— A)pq=-p’miQ*r*(A+C-B)(B+C - A)x
x A'B[(A-C)B'p’ +(B-C)A'q’]+&*M,

The tensor of inertia J, of the rigid body, whose point mass m is superposed with O,
obtains the form

A0 O
J,=|0 B 0], (®)
0 0 C

where A, B and C are the principal moments of inertia of the rigid body, p, g, r are the
components of the absolute angular velocity .
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The right-hand sides of two equations (2) comprises coefficients
Q K,L, M,N,R,S,T,Q,, K,, L, M,, N,, R,, S,, T, that are specific expressions
containing A, B, C. For instance,
A-C ,C-B ,B-A _(A-C)B-A) ,(B-A)C-B)A-C)

B A C BC ABC

We have chosen not to reference in our paper other expressions from (4) such as
K., ..., T, due to their drawbacks.

If A=B, & =0 the system (4) reduces to the corresponding system in [1, 9].

Q=-1-5 (6)

3 PURPOSE AND TASKS OF THE STADY

Take into consideration a nearly dynamically spherical rigid body, where the principal
central moments of inertia of the unperturbed body can be expressed in the following manner

A=J,+eAN, B=J,+¢B, C=],, ()

where 0< g <<1 is a small parameter.

According to (2) Q%, 2Q™ are small parameters in equations of motion (4). We assume
that, i.e. Q2 ~&%, 10" ~&?, 1072 ~1.

For &£=0 equations of motion (4) depict the motion of a body exhibiting spherical

symmetry.
We also make an assumption
|A— B| =0(£%d,), |A - B'| =0(egd,), J,~J,. (8)

Then, after (7), (8) the following equations are provided
A-B=g(A'-B)=¢’J,, A-C=¢4, B-C=¢B. 9)

After applying transformations to the system (4), we derive the perturbed Euler system.

Relations (7)—(9) and transfer to show time 7 =&t are considered (terms of order & and
higher are rejected):

dp _ B’ A
_p:—[l—g‘)—]qr'i'gflp(plq!r)! p(O): pO’

dr J, 0

dg A B’

— =——|1-e— |pr+ef_(p,q,r), 0) =q,, 10
i ‘]0( ejojp ef,(p,a,r), q(0)=q, (10)
dr A'-B’

d—: paq+¢f,(p,q,r), r0)=r,.

T NR

In the given equation, r is a slow variable. The set of differential equations in (10)
constitutes a nonlinear system, wherein the frequency is contingent upon the slow variable.
The perturbations were incorporated within (10).
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_pzm

_ O , 207
ef,(p,q,r)= {Q ‘qrh,, +J—qr(hl2 - Ahy)+

J p(q2h21+r2h31)}+
0 0

0
+8&(1—8A),
Jo Jo
_pzm
0

+g&(l—gi),

JO ‘]0

_ 2

ef, (p,q,r)= pzm AQ7 P (A'p? + B’q2)+g%,

JO ‘]0
O = q2 + pz +r?, O, = A'(pz +3r2) + (3A'_ZB,)q21
9y =2(A'-B")p*-B'r*, g, =(A'-B)q*+p®),
h,=-0,, h,= B'(q2 +3I’2) —-(2A'-3B’) pz’

h, =(B'-A)@* + p*+2r?), h, =-AT%

. Q? , Q™
et (p,q,r) = {Q "proy, T3 pr(g, +B'gy,) + 3 q(r’g, + ngsl)}+ (11)

0 0

The perturbation torque of the influence of a movable mass in the rigid body is
small [1, 9].
The solution of the unperturbed system (10) for £ =0 is as follows
Joawsing

=acos g, = r=r,. 12
p » q BT 0 (12)

In the given equation, a=./p?+(p,/w)> is the amplitude, @ =wr+g¢, is the phase,

w=rJAB' J,» AB'>0, ¢, is the initial phase, cosg, =p,/a, sing, =—q,B'/A" /a
supposedly.

We transition from the slow variables p, g, r to the standard slow variables a, r and
the phase ¢ by implementing a change in variables:

Jo,awsin g
B'r
We differentiate equations (13) considering a perturbed system. Through a series of

transformations, we arrive at the system in its standard form, where the point represents the
time derivative of 7)

p=acosp, q=- , r=r. (13)

acosp—-agsing =-aw(r)sinp+¢f, ,

asin¢>+agbcosq>:aw(r)cosw—,/%gfzq, (14)

P B oA az,’%sin¢c05¢+gf2r, W(r):JL\/A'B’,

‘]0 0

oty = wnysing oty of, =efy, ([ of, s 2w cosp o st
1, A 1, A

We will address the equations (14) with a focus on solving for a and ¢ , resulting in the
derivation of a system:
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. fB’ :
a=¢f, cosp-ef,, Esm(p,

@=w(r)— 1 2pSiNQ — 15%,/%005@ (15)
a

= B,_Araz,fﬁsin coso + ¢ f
JO B, §0 (0 2r*

We insert (13) into the third equation (11) for the variable r. With the standard
transformations, we arrive at the system of equations:

!’ !

a=¢ awsingcosp +&f, cosp—ef,, /%sin(p,
0

P B A A,Singocosgo— (16)
3. 2\B

M,
'OJ AQ7*r* (A'a® cos® go+B( B ) sin g0)+gJ—

0 0

—p? J,awsin 2
ef,,cosp= P mCOS(p{ %[(9‘l gj A (-r* —a*cos’ g — ( 3,8 ) sin® )] +
0

-4

)
+£j—[B’(32 (0 )sm P)—(2A - 38’)<’;\2(:oszgo]+/m acos g x

0 0

x[(J ) sin® p(-2r* —a’ cos® ¢ — ( 3,8 ) sin (/))+A'r4]}+gJ—(1 EJA)COS(D,
0 0

2 -2

gflqsingoz_p msingo{l’aCOS(o[(Ql gj B")(r* + a* cos’ (p+( 3,8 ) sin® ) —
0 0
Q—Z
—J—(A(3r +a’cos’ @) + (3A' - ZB)( 3,8 ) sin® )]+

0
x[r?(2a* cos® p(A'— B') - B'r®) + a’ cos® p(A’' — B")(a’ cos? (p+( 3,8 ) sin go)]}

+g|\;|—(1 g—)sm(p

0 0
In this system of equations, the value w(r)=rvA'B'/J, represents the perturbed
frequency of the converted system. If we average system (16) over the phase ¢ [28], we
obtain:

a=pBy(ad’ +na’r’ —ar?),
r=pAar? +g%. a7
J

0

The notations are introduced at this point:

2 ’ 12
_ptm ., 10, A (. A 1,
P o -2 g=21-2 ) o LaoBy
F="y 7= 2( B’j sl 57 ) 773l )
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We transform system (17) to:
dx
dr
dy oz, 2My

—=2BAXy" +¢ .
dr PAYY J \/y

0

= 2Byx(ax® +nxy —y?),
(18)

Here we include the slow variables x=a*, y=r?>0 in system (18).

3 BASIC RESULTS

System (18) was numerically resolved using the initial conditions x(0) =1, y(0) =1 and
task factors m=1 p =1, ¢=0.1, constant moment projection M, =-0.135. The values of
the components of the moments of inertia are presented in Table 1.

The graphical representations of the varying values x=a? and y=r? (the squared

equatorial and axial components of the rigid body angular velocity vector) are represented in
two cases (Fig. 1-4) when parametersare 4 =98, Q=10 and 1 =9, Q=3.

Table 1
Components of moments of inertia.
Case J Al B’
1 1 0,51 0,5
2 3 0,83 0,8
x(T)
1.006 e
—_—
1.004 4
1.002 +
1 7] T T
30 40 a0

T

Fig. 1. The plots of changing value X in the cases (1) and (2) for
A=98 Q=10
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0.75-

0.50+

025

a0

Fig. 2. The plots of changing value y in the cases (1) and (2) for

2=98, Q=10

x(t)
1.0151 e ————

2 e —

N
1.010 - -

-~
e
1.005 1
1 I T T T

[
(.
—
=

. 13 20 25

Fig. 3. The plots of changing value X in the cases (1) and (2) for
A=9, Q=3

050+

023

Fig. 4. The plots of changing value y in the cases (1) and (2) for
A=9, Q=3
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4 DISCUSSION OF THE RESULTS OF THE STUDY

Variable x (Fig. 1, 3) has a slight increase, maximum value which is achieved in case 2 (
A/C<l1l5)at 1=9, Q=3 andisequal to x=0.016. However, in case 1 (A/C ~1.5), the
growth rate is observed at the initial values of time, regardless of the values A, Q, satisfying
the condition (3).

The variable y = r? (Figs. 2, 4) asymptotically approaches zero. In the case of a ratio of
moments of inertia A/C ~1.5 (the first case), the decrease y occurs faster than in the case of
A/C <1.5 (the second case). Also, the nature of the decrease of the axial component depends
on the values of 4, Q.When 1=9, Q=3 the axial component decreases faster than when
A =98, Q=10 (with the other parameters being the same).

S CONCLUSIONS

The motion of a nearly dynamically spherical rigid body with a movable mass under the
action of constant body-fixed torques is investigated. We obtain the system of motion
equations in standard form, which refined in square approximation by small parameter.

The averaging method was applied to the nonlinear system of rotational motion
equations. The evolution of rigid body motion is described. The importance of the results is to
applications such as analyzing angular motions of spacecraft, in moving mass control, and
reentry vehicles.
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