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Анотація: Стаття присвячена дослідженню нестаціонарних процесів із використанням 

методів сингулярного розкладання та штучних нейронних мереж як інструментів для аналізу 

складних динамічних систем із мінливою структурою та високим рівнем стохастичності. У ній 

розглядаються підходи до моделювання таких процесів через адаптивні інтелектуальні 

системи, здатні до автоматичного виявлення закономірностей і прогнозування поведінки в 

умовах невизначеності. Розвиток інтелектуальних технологій, зокрема поєднання сингулярного 

розкладання та нейронних мереж, відкриває нові можливості для автоматизації аналізу та 

управління такими процесами. Метою дослідження є розробка гнучкої моделі для 

ідентифікації, класифікації та прогнозування станів нестаціонарних систем шляхом інтеграції 

методів сингулярного спектрального розкладання та штучних нейронних мереж із двоетапним 

стохастичним програмуванням. У роботі використано методи сингулярного розкладання для 

декомпозиції часових рядів на структурно значущі компоненти, такі як тренди, коливання та 

шум, а також багатошарові штучні нейронні мережі, зокрема модель персептрона з 

адаптивними коефіцієнтами зв’язків і зворотним зв’язком, для навчання на декомпонованих 

даних і прогнозування поведінки системи. Отримані результати демонструють, що 

запропонована модель забезпечує високу точність розпізнавання динамічних змін і 

прогнозування розвитку нестаціонарних процесів завдяки комбінації декомпозиції даних і 

машинного навчання, перевершуючи традиційні підходи в умовах високої невизначеності. 

Розроблена схема двоетапного управління, яка включає стратегічні та тактичні рішення, 

дозволяє ефективно адаптувати систему до мінливих умов, формуючи оптимальні реакції на 

основі реальних даних. Перспективи подальших досліджень пов’язані з удосконаленням 

алгоритмів навчання нейронних мереж для роботи з великими обсягами багатовимірних даних, 

інтеграцією глибокого навчання для аналізу складніших нестаціонарних процесів, а також 

розширенням моделі на нелінійні системи з урахуванням додаткових стохастичних факторів, 

що сприятиме підвищенню її універсальності та практичної застосовності в реальних умовах. 

Ключові слова: нестаціонарні процеси, сингулярний розклад, штучні нейронні мережі, 

стохастичне програмування, адаптивне управління, моделювання часових рядів. 
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Abstract: The article is devoted to the study of non-stationary processes using singular 

decomposition methods and artificial neural networks as tools for the analysis of complex dynamic 

systems with a variable structure and a high level of stochasticity. It considers approaches to modeling 

such processes through adaptive intelligent systems capable of automatically detecting patterns and 
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predicting behavior under conditions of uncertainty. The development of intelligent technologies, in 

particular the combination of singular decomposition and neural networks, opens up new opportunities 

for automating the analysis and control of such processes. The aim of the research is to develop a 

flexible model for identifying, classifying and predicting the states of non-stationary systems by 

integrating singular spectral decomposition methods and artificial neural networks with two-stage 

stochastic programming. The work uses singular decomposition methods to decompose time series 

into structurally significant components, such as trends, fluctuations, and noise, as well as multilayer 

artificial neural networks, in particular a perceptron model with adaptive coupling coefficients and 

feedback, to train on decomposed data and predict system behavior. The results obtained demonstrate 

that the proposed model provides high accuracy in recognizing dynamic changes and predicting the 

development of non-stationary processes due to the combination of data decomposition and machine 

learning, outperforming traditional approaches in conditions of high uncertainty. The developed two-

stage control scheme, which includes strategic and tactical decisions, allows the system to effectively 

adapt to changing conditions, forming optimal responses based on real data. Prospects for further 

research are related to the improvement of neural network training algorithms for working with large 

volumes of multidimensional data, the integration of deep learning for the analysis of more complex 

non-stationary processes, as well as the expansion of the model to nonlinear systems taking into 

account additional stochastic factors, which will contribute to increasing its versatility and practical 

applicability in real conditions. 

Keywords: non-stationary processes, singular decomposition, artificial neural networks, 

stochastic programming, adaptive control, time series modeling. 
. 
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1 ВСТУП 

В координатах сучасності, де технологічний прогрес диктує нові вимоги до аналізу 

складних динамічних систем, актуальність дослідження нестаціонарних процесів 

набуває особливої значущості, оскільки такі процеси характеризуються змінними у часі 

параметрами, що ускладнює їх математичне моделювання та прогнозування, а отже, 

потребує застосування інноваційних підходів, які поєднують класичні математичні 

методи з сучасними обчислювальними технологіями, зокрема методами сингулярного 

розкладання та штучних нейронних мереж, які в сукупності забезпечують можливість 

ефективно виділяти ключові закономірності та кореляції в даних, навіть у випадках, 

коли ці дані є хаотичними, зашумленими або мають нелінійну природу. 

Актуальність дослідження питань використання нестаціонарних процесів но основі 

сингулярного розкладання і впровадження штучних нейронних мереж полягає в тому, 

що сучасні науково-технічні завдання, пов’язані з аналізом великих обсягів даних, 

прогнозуванням складних систем та оптимізацією процесів у реальному часі, 

вимагають розробки нових методологічних підходів. Ці складові мають можливість 

прийняти динамічну природу таких процесів, оскільки традиційні статистичні методи 

часто виявляються недостатньо ефективними для аналізу нестаціонарних сигналів, що 

характеризуються змінними спектральними характеристиками, нелінійними 

залежностями та високою чутливістю до зовнішніх збурень. В той самий час, 

комбінація сингулярного розкладання, яке дозволяє виділяти домінуючі компоненти 

даних та знижувати їх розмірність, і штучних нейронних мереж, які здатні 

апроксимувати складні нелінійні залежності та адаптуватися до змін у вхідних даних, 

створює потужний інструментарій для дослідження та управління нестаціонарними 

процесами в галузевому розрізі. 

2 АНАЛІЗ ЛІТЕРАТУРНИХ ДАНИХ ТА ПОСТАНОВКА ПРОБЛЕМИ 

У наукових дослідженнях [1, 2] підкреслюється, що програмно-апаратні комплекси 

досягають максимальної ефективності лише за умови повної реалізації алгебраїчної 

структури, на якій базується їхня математична модель, що особливо актуально в 

контексті аналізу нестаціонарних процесів за допомогою методів сингулярного 

розкладання та штучних нейронних мереж. Алгебра багатовимірних матриць, як 

демонструють численні роботи, може слугувати універсальною моделлю даних для 

розв'язання задач із різних предметних областей, зокрема для обробки динамічних 

сигналів і часових рядів, що є ключовими в дослідженні нестаціонарних систем. 

Важливий внесок у розвиток цієї теорії здійснили автори [3, 4], які встановили 

гомоморфізм між алгеброю багатовимірних матриць і реляційною алгеброю, що 

відкрило нові можливості для паралельної обробки запитів у базах даних, що може 

бути адаптоване для аналізу великих обсягів нестаціонарних даних. 

Значний прогрес у галузі алгоритмічної обробки даних був досягнутий завдяки 

роботам [5], де запропоновано поліноміальні алгоритми для виведення асоціативних 

правил та маршрутизації, які можуть бути інтегровані в методи аналізу нестаціонарних 

процесів. Крім того, у дослідженнях [6] продемонстровано успішне узагальнення 

матричних алгоритмів шифрування. У роботі [7] запропоновано математичну модель 

операцій згортки на основі алгебри багатовимірних матриць, що може стати в нагоді 

при розробці нових методів аналізу часових рядів. Додатково, у [8] алгебра 

багатовимірних матриць застосовується для дослідження гіперграфів, що розширює 

можливості моделювання складних систем із нелінійними взаємозв'язками. 
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Наведений огляд ілюструє, як узагальнення класичних алгоритмів у рамках алгебри 

багатовимірних матриць дозволяє покращити їхні характеристики або створити гнучкі 

інструменти для вирішення ширшого кола завдань, що особливо актуально для аналізу 

нестаціонарних процесів. 

3 ЦІЛЬ ТА ЗАДАЧІ ДОСЛІДЖЕННЯ 

Мета статті – обґрунтувати впровадження моделі ідентифікації та корегування 

нестаціонарних процесів на засадах поєднання сингулярного розкладання та штучних 

нейронних мереж. 

Задачі дослідження: 

‒ дослідити характерні риси функціонування нестаціонарних процесів у 

складних динамічних системах та обґрунтувати актуальність застосування сучасних 

інтелектуальних методів для їх аналізу; 

‒ розробити методологічну основу двоетапного стохастичного програмування, 

враховуючи стратегічні та тактичні аспекти прийняття рішень у контексті управління 

нестаціонарними процесами; 

‒ створити когнітивно-нейронну модель адаптивного управління та 

формалізувати її математичний опис за допомогою відповідних операторів та 

обмежень. 

4 РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ 

У контексті сучасних досліджень нестаціонарних процесів, що характеризуються 

складною динамікою, змінністю структури у часі та наявністю латентних компонент, 

все більшої актуальності набувають моделі, які дозволяють автоматизовано 

здійснювати ідентифікацію та класифікацію станів системи на основі інтелектуального 

аналізу даних з використанням методів сингулярного розкладання та штучних 

нейронних мереж. Замість традиційного підходу, що базується на фіксованому 

зіставленні нечітких ситуацій, визначених експертами, із реальними умовами 

функціонування об’єкта, і в кордонах парадигми пропонується гнучка адаптивна 

система, де аналіз часових рядів здійснюється через їх багатокомпонентну 

декомпозицію та автоматичне навчання моделей, здатних самостійно виявляти 

подібності між спостережуваними патернами та узагальненими репрезентаціями 

еталонних станів. 

Зокрема, застосування сингулярного спектрального розкладання дозволяє 

виокремити структурно значущі компоненти з нестаціонарного часового ряду, 

включаючи тренди, коливальні елементи, сезонні впливи та шумові домішки, тоді як 

нейронні мережі, навчені на таких декомпонованих даних, забезпечують високоточне 

розпізнавання динамічних змін і прогнозування їх подальшого розвитку (рис. 1.) [9]. У 

підсумковій концепції рішення щодо ідентифікації поточного стану системи 

приймається не через порівняння з попередньо заданими нечіткими сценаріями, а на 

основі адаптивного навчання моделей на реальних даних, що дозволяє виявити 

найбільш подібну до поточної ситуацію у багатовимірному просторі ознак та 

сформувати оптимальну реакцію системи у вигляді комбінації параметрів розвитку. 
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Рис 1. Структурна схема прийняття рішень на основі нейронної мережі для ідентифікації реальних 

параметрів розвитку у нестаціонарних процесах 
 

Факт наявності зворотного зв’язку між результатами моделювання нестаціонарних 

процесів і діями системи управління створює передумови для побудови адаптивного 

контуру, в якому управлінські рішення постійно коригуються на основі актуальних 

значень вихідних параметрів, отриманих за допомогою методів сингулярного 

розкладання у поєднанні з нейронними мережами, що здатні до навчання та 

самооновлення на основі нових даних [10].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Структура і 

функціонування системи 

Z Входи 

А X 

W 

U1 Un 

Зворотній зв’язок 

D1 

Dn 

 
 

Рис 2. Узагальнена схема когнітивно-нейронної системи адаптивного управління нестаціонарними 

процесами з використанням сингулярного розкладання та штучного інтелекту (Z – випадкові 

(стохастичні) збурення, що впливають на динаміку нестаціонарних процесів; A – центральний модуль 

керування, що реалізує адаптивну стратегію управління; D₁, ..., Dₙ – децентралізовані підсистеми 

керування або локальні регулятори процесів; W – вагові коефіцієнти або шкала пріоритетів головного 

модуля керування; U₁, ..., Uₙ – шкали пріоритетів, що відображають локальні цілі або критерії оптимізації 

в межах окремих підсистем) 
 

Запропонована модельна схема є універсальним інструментом для відображення 

принципів функціонування об’єкта моделювання, оскільки вона дозволяє чітко 

розмежувати систему на керуючу підсистему, що відповідає за прийняття стратегічних 

рішень, та операційну підсистему, яка реалізує безпосередні дії у відповідь на змінні 

зовнішні та внутрішні умови. Саме двоетапна структура управління, яка поєднує 

математичну обробку стохастичних сигналів і інтелектуальну обробку даних, закладена 

в основу формалізації задачі стохастичного програмування, де алгоритми штучного 

інтелекту забезпечують адаптацію до невизначеності, багатоваріантності та високої 

мінливості вхідних параметрів, що притаманні нестаціонарним процесам у складних 

системах [11]. 
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Перший етап (t=l) 

Ухвалення апріорного рішення 

на основі початкової 

детермінованої і імовірнісної 
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Другий етап (t=2) 
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Рис. 3. Послідовна структура двоетапного прийняття рішень у моделі управління нестаціонарними 

процесами на основі апріорної та апостеріорної інформації 
 

У загальному формалізованому вигляді задача стохастичного програмування, що 

реалізується у два послідовні етапи та базується на застосуванні алгоритмів штучного 

інтелекту, може бути представлена як математична модель оптимізації, яка враховує 

імовірнісну природу вхідних параметрів, притаманну нестаціонарним процесам, і 

включає інтегровану обробку інформації на основі методів сингулярного розкладання 

та навчання штучних нейронних мереж.  

0 0
( ) ( )

max ( ) max ( ) max ( , ( )) ,
x X x X y Y x

f x x M x y
 

  
  

  
  

          (1) 

У контексті моделювання нестаціонарних процесів із використанням сингулярного 

розкладання та штучних нейронних мереж, математична постановка двоетапного 

стохастичного програмування набуває особливої гнучкості й адаптивності, що дозволяє 

ефективно враховувати часову варіативність даних і високий рівень невизначеності. У 

такій постановці змінна X інтерпретується як опукла, замкнута й обмежена множина, 

яка визначає простір стратегічних (апріорних) рішень, тобто таких, що формуються до 

моменту реалізації конкретної ситуації, і задає допустиму область вибору програмного 

вектору x, який визначає базову архітектуру або параметри системи управління [12]. 

У свою чергу, 1 2, ( ), ( ) ( )( ) nx у у у у    , як k  вимірний вектор апостеріорних 

рішень, тобто оперативних або тактичних керуючих дій, які приймаються на основі 

фактично реалізованого сценарію  ; рішення формуються з урахуванням впливу 

стохастичних чинників, які особливо актуальні для нестаціонарних систем. Множини 

( )Y x  визначають опуклі, замкнуті й обмежені області у просторі kR , в межах яких 

здійснюється вибір гнучких рішень ( )y   для конкретного значення x , і, таким чином, 

вони враховують як структуру апріорного рішення, так і ймовірнісну природу розвитку 

подій. 

Функція ( )x  виконує роль критерію ефективності стратегічного рішення, тоді як 

функція 0 ( , ( ))x y   відображає оцінку якості прийнятого рішення x , що доповнюється 

тактичними діями ( )y   в умовах реалізованої ситуації  . У цьому контексті, 

стратегічні рішення x мають довгостроковий вплив і визначають межі функціонування 

системи загалом, тоді як тактичні рішення ( )y   забезпечують гнучке реагування в 

умовах непередбачуваних змін, що характерні для нестаціонарних процесів [13]. 

З позиції ієрархічного управління, різниця між апріорними та апостеріорними 

рішеннями полягає, насамперед, у ступені їхньої гнучкості та часовому горизонті 

реалізації: перші задають обмеження на архітектуру управління, а другі – адаптуються 

до конкретних реалізацій динаміки системи. При цьому, в умовах багатокрокових 

моделей, особливо коли йдеться про машинне навчання та прогнозування на базі 

сингулярного спектрального аналізу, апостеріорні рішення можуть виконувати функції 

оперативного реагування на дані, які надходять у реальному часі, і при цьому не 

суперечити загальній стратегії, закладеній у x . 
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У такій структурі вводиться оператор ( )H  , який формалізує відображення від 

множини допустимих тактичних рішень ( )Y x  до простору стратегічних параметрів 

X , тобто виконує функцію перетворення результатів тактичного рівня на мову 

стратегічної адаптації, що є надзвичайно важливим у задачах інтелектуального 

управління складними, змінними у часі процесами [14]. 

( ) ( ) , ( ) ( ), .H y x y Y x                (2) 

Оператор ( )H   інтерпретується як матриця спеціалізованої рядково-діагональної 

структури, яка виконує трансформацію множини гнучких тактичних рішень у простір 

стратегічних варіантів, що визначають параметри функціонування системи в цілому. 

Формальне співвідношення, що описується формулою (2), вказує на існування 

жорсткого функціонального зв’язку між апостеріорним рішенням ( )y  , прийнятим в 

умовах конкретної реалізації стохастичного середовища, та стратегічним вектором 

параметрів xxx , який задає допустимі межі для варіативності тактичної поведінки 

системи. 

Введений варіант інтерпретує стратегічне рішення xxx  як інерційну, малочутливу 

до короткострокових коливань компоненту управління, що не залежить від конкретних 

імовірнісних обмежень у момент початкової постановки задачі, але водночас визначає 

архітектуру системи реагування на динаміку змін середовища. З іншого боку, 

формалізація через оператор ( )H   відображає ключову особливість адаптивного 

управління: стратегічні параметри залишаються інваріантними відносно реалізацій 

ситуацій ( )y  , тобто зберігають свою сталість у межах визначеної політики, тоді як 

тактичні рішення можуть гнучко змінюватися, реагуючи на коливання у зовнішньому 

середовищі або структурі вхідних даних [15]. У багатокрокових сценаріях управління, 

що характерні для нестаціонарних процесів, які моделюються за допомогою гібридних 

моделей сингулярного спектрального аналізу та штучних нейронних мереж, природно 

виникає розрізнення між апріорними та апостеріорними тактичними рішеннями: перші 

залежать від реалізованих ситуацій на попередніх етапах, тобто від ( )t ly   , тоді як 

другі – від поточної конфігурації стану системи ( )ty  , включаючи її негайні 

стохастичні характеристики. 

0 0
( ) ( )

( ) ,

max ( ) max ( ) max ( , ( )) ,
x X x X y Y x

Hy x

f x x M x y
 

 

  
  

 

 
  
  

         (3) 

за виконання умов: 

0 01) ;

2) ( ) ( ) ( ) ( );

3) ( ) ;

4) 0; ( ) 0; .

A x b

A x B y b

Hy x

x y

   



 



 



  

              (4) 

У цьому контексті функція мети управління, позначена як 0f , слугує основним 

орієнтиром для оптимізації, тоді як випадкова системна ситуація  , що 

розвивається у безперервному просторі станів, додає елемент невизначеності, з яким 

необхідно працювати. Для цього вводиться вектор стратегічних коефіцієнтів 
0C , який 

відображає довгострокові пріоритети, а також випадковий вектор тактичних 

коефіцієнтів ( )C  , що адаптується до мінливих умов у реальному часі [16]. 
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Обмеження першого етапу задаються через детерміновану матрицю 0 0,A b  та 

відповідний вектор 0b , які разом установлюють базові рамки для стратегічного 

планування, тоді як на другому етапі з’являються випадкові матриці  ( )A  ) і ( )B  , що 

визначають нормативи витрат і оперативні технологічні підходи, а також випадковий 

вектор ( )b  , який формує додаткові обмеження, залежні від конкретної реалізації 

випадкової ситуації. Важливу роль відіграє матриця H , яка встановлює стратегічні 

зв’язки між різними компонентами системи, забезпечуючи їхню узгодженість. Умови 

задачі включають детерміновані обмеження для стратегічного вектора, імовірнісні 

обмеження, що накладаються як на тактичні, так і на стратегічні вектори, а також 

вимогу врахування стратегічних зв’язків, що робить задачу багатошаровою та 

комплексною [17]. 

Сформована задача, яку називають завданням стохастичного програмування із 

стратегічними зв’язками, набуває вигляду лінійного двоетапного стохастичного 

завдання з кінцевою множиною можливих сценаріїв  . Для її розв’язання за 

допомогою методів сингулярного розкладання та нейронних мереж необхідно виконати 

низку умов: множини  X  та ( )Y x  мають бути опуклими багатогранниками, 

визначеними системами лінійних нерівностей, функції 0( ), ( , ( ))x x y   , повинні 

зберігати лінійність, а множина випадкових ситуацій  1,2,...N   має бути 

скінченною з заданими ймовірностями реалізації 1 2, ,..., np p P . У такому разі повна 

інтерпретація задачі, що враховує всі перелічені обмеження, дозволяє ефективно 

застосовувати сучасні обчислювальні методи для аналізу нестаціонарних процесів, 

забезпечуючи точність і адаптивність до стохастичної природи досліджуваних систем 

0

0

1

max ( ) max ( ( ) max( , ) ;
N

v v v
x x yvv

f x C x p C y


 
  

 
           (5) 

при виконанні умов: 

0 01) ;

2) ; 1... ;

3) ; 1... ;

4) 0; 0; 1... .

v v v v

v

v

A x b

A x B y b v N

Hy x v N

x y v N



  

 

  

             (6) 

У цьому підході штучна нейронна мережа постає як складна, детально 

візуалізована модель, побудована на основі численних однотипних елементів, відомих 

як кібернетичні нейрони або вузли, які разом утворюють багатошарову архітектуру, що 

відображає динамічні зв’язки та взаємодії в системі. Така мережа, призначена для 

аналізу нестаціонарних процесів, зазвичай включає один вхідний шар, який приймає 

початкові дані, один вихідний шар, що формує результати обробки, а також численні 

проміжні шари, які виконують функції трансформації та обчислення, забезпечуючи 

глибоке опрацювання вхідної інформації. 

Особливу увагу приділено моделі персептрона, яка в даному випадку 

інтерпретується як нейронна мережа, спеціально адаптована для роботи з системами, 

що розвиваються, і включає так званий «блок управління змінами», здатний реагувати 

на нестаціонарність процесів. Представлена структура, яка може також мати і 

тришаровий вигляд, ефективно застосовується для моделювання складних динамічних 

систем, де методи сингулярного розкладання доповнюють можливості нейронних 

мереж, дозволяючи розкладати багатовимірні дані на компоненти та виявляти 

приховані закономірності [17]. 
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Рис. 4. Багатошарова структура штучної нейронної мережі для  

моделювання нестаціонарних процесів 
 

Увагу приділимо моделі персептрона, яка вирізняється специфічним способом 

організації зв’язків між її шарами, де зв’язки між елементами першого та другого шарів 

формуються випадковим чином, тоді як коефіцієнти зв’язку між другим і третім 

шарами, позначені як «е», залишаються фіксованими, забезпечуючи стабільність 

структури на певних етапах обробки даних. Виходи кожного елемента цієї моделі 

набувають лише двох можливих значень – 1 або 0, що відображає бінарну природу 

реакцій, а гнучкість усієї системи досягається завдяки динамічній зміні згаданих 

коефіцієнтів «е», які регулюють взаємодію між другим і третім шарами, дозволяючи 

адаптувати модель до мінливих умов нестаціонарних процесів [3]. Для налаштування 

персептрона на розпізнавання певних закономірностей першому шару демонструються 

вихідні образи, після чого для кожного шару задається очікувана реакція, а система, 

керуючись установленими правилами, поступово модифікує коефіцієнти зв’язків, доки 

не буде досягнуто бажаного результату, що відповідає цілям аналізу. 

Організація нейронів у мережу відбувається таким чином, що вихід одного 

нейрона, позначеного як i-й, з’єднується з одним із входів іншого, j-го нейрона, при 

цьому вихідна змінна першого ототожнюється з вхідною змінною другого, а ваговий 

коефіцієнт, який характеризує силу та напрямок цього зв’язку, відіграє ключову роль у 

формуванні поведінки системи. Нейрони організовуються в мережу за рахунок того, що 

вихід і-го нейрона ( )iy з'єднується з одним з входів ( )jx  іншого j-го нейрона. При 

цьому вихідна змінна iy ототожнюється з вхідною змінною jx . Ваговий коефіцієнт ijc  

характеризує знак і силу зв'язку між змінними ix  і jx . Можливий і зворотний зв'язок, 

коли вихід i-го нейрона з'єднується з j-м входом j-го нейрона. Як правило, коефіцієнти  

ji ijс c . 

У деяких випадках можливе використання зворотного зв’язку, коли вихід i-го 

нейрона спрямовується назад до входу j-го нейрона, що додає додаткову складність і 

гнучкість моделі, причому коефіцієнти зв’язків зазвичай зберігають свої стандартні 

значення, але можуть адаптуватися залежно від потреб задачі. Важливою 

характеристикою нейронів у контексті нестаціонарних процесів є їхня пластичність, 

тобто здатність змінювати свої параметри в процесі роботи, яка поділяється на 

синаптичну пластичність, пов’язану зі зміною вагових коефіцієнтів, і нейронну 

пластичність, що стосується регулювання порогових значень нейронів [6]. 

Для спрощення роботи з пороговою пластичністю її зводять до синаптичної за 

допомогою спеціального прийому, коли до наявних входів нейрона додається 

Вхідний шар    Другий шар  Вихідний шар 
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додатковий фіктивний вхід, на який подається постійний сигнал зі значенням +1, а 

ваговий коефіцієнт цього входу модифікується в процесі обробки даних, що 

еквівалентно зміні порогу активації нейрона (рис. 5.).  
 

 
Рис. 5. Графова модель зв’язків між нейронами в структурі штучної нейронної 

 мережі для аналізу нестаціонарних процесів 
 

Фундаментальне значення має правило адаптації вагових коефіцієнтів у структурі 

нейромережі, яке вперше було сформульовано дослідником Д. Хеббом. Наведене 

правило забезпечує здатність нейромереж до навчання на основі накопиченого досвіду, 

що є критично важливим у ситуаціях, коли динаміка вхідних параметрів системи є 

змінною в часі, а отже нестаціонарною. Формально, якщо вважати, що управлінський 

процес на підприємстві, яке функціонує в умовах невизначеності, розділений на 

дискретні часові інтервали або такти, то в момент часу, що відповідає k-му такту, два 

нейрони мережі активуються значеннями k

ix  і k

jx  У такому разі вага зв’язку між цими 

двома нейронами, що моделюють взаємозалежні параметри управлінського впливу або 

реакції системи на зовнішні збурення, підлягає модифікації шляхом її збільшення на 

величину, яка прямо пропорційна добутку активностей обох нейронів у відповідному 

такті. Це відображає ідею посилення синаптичного зв’язку між тими вузлами системи, 

які одночасно демонструють високий рівень активації, що в моделі підприємства 

відповідає підвищенню впливу взаємозалежних факторів у системі адаптивного 

управління нестаціонарними процесами. 

k k k

ij i jc x x                    (7) 

У разі двійкових змінних приріст дорівнює або +1 (при збігу знаків 
k

ix  і k

jx ), або - 1 

(коли знаки різні). Якщо початкова вага зв'язку дорівнювала 0, то вага зв'язку до p-го 

такту тоді буде дорівнюватиме: 

1

,
p

k k

i j i jc p x x          (8)
 

де 
k

ix  і k

jx – стани двох нейронів в k-му такті; p - число тактів формування нейронної 

мережі. 

Отже, у результаті побудови відповідної архітектури штучної нейронної мережі, 

зокрема у формі персептрона, ми формуємо адаптивну математичну модель, що здатна 

описувати складні динамічні аспекти процесу управління на підприємстві, з 

урахуванням властивої цим процесам нестаціонарності, структурної мінливості вхідних 

параметрів, а також потреби у безперервному навчанні системи для досягнення 

стійкого й ефективного функціонування в умовах змінного середовища.  
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5 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ 

Сингулярне спектральне розкладання відіграє ключову роль у декомпозиції 

часових рядів, розділяючи їх на значущі складові: тренди, коливання та шум, що дає 

змогу виділити суттєві патерни навіть у умовах високої невизначеності, тоді як 

нейронні мережі, використовуючи ці розкладені дані, забезпечують точне 

розпізнавання змін і прогнозування подальшого розвитку процесів, створюючи основу 

для інтелектуального аналізу (рис. 1). Пропозиція замінює традиційні методи, засновані 

на фіксованих експертних оцінках, гнучкою системою, де рішення формуються через 

навчання моделей на багатовимірних просторах ознак, що відображають поточний стан 

системи та її можливі реакції. 

Інтеграція зворотного зв’язку між результатами моделювання та управлінськими 

діями створює адаптивний контур, у якому параметри постійно коригуються залежно 

від актуальних даних, отриманих завдяки комбінації сингулярного розкладання та 

нейронних мереж, що здатні до самооновлення (рис. 2). Запропонована модель 

двоетапного стохастичного програмування, реалізована через штучний інтелект, 

враховує імовірнісну природу нестаціонарних процесів, дозволяючи оптимізувати 

стратегічні та тактичні рішення в умовах невизначеності (рис. 3) вся схема, яка поєднує 

математичну обробку сигналів із когнітивними можливостями нейронних мереж, стає 

універсальним інструментом для управління складними системами, де адаптивність і 

точність є критично важливими компонентами. 

6 ВИСНОВКИ 

Дослідження архітектури двоетапного стохастичного програмування виявило її 

ефективність у контексті нестаціонарних процесів, оскільки вона передбачає прийняття 

стратегічних рішень на основі початкових даних з подальшою адаптацією тактичних 

дій залежно від реалізованих сценаріїв, що дозволяє враховувати динамічні зміни в 

системі. Аналіз адаптаційних механізмів управління показав, що використання 

штучних нейронних мереж у поєднанні з сингулярним спектральним розкладанням дає 

змогу ефективно виділяти ключові компоненти часових рядів (тренди, коливання, 

шум), що є критично важливим для обробки нестаціонарних даних та подальшого 

навчання моделей. Вплив стохастичних факторів на процеси прийняття рішень було 

оцінено через призму відкритих адаптивних систем, які здатні модифікувати свою 

поведінку у відповідь на зовнішні збурення завдяки нейромережевим механізмам 

навчання та зворотного зв’язку, що особливо актуально для аналізу нестаціонарних 

динамічних систем. 

Розроблено математичну модель стохастичного програмування, яка враховує 

ієрархічні зв’язки між стратегічними та тактичними рішеннями, а також інтегрує 

оператори перетворення між множинами рішень, що дозволяє формалізувати адаптивні 

властивості нейромережевих систем у контексті нестаціонарної динаміки. 

Запропоновано персептронну архітектуру нейронної мережі, оптимізовану для 

моделювання динамічних процесів у умовах невизначеності, яка включає механізми 

адаптації, оновлення вагових коефіцієнтів і навчання на основі даних, попередньо 

оброблених методами сингулярного розкладання, що забезпечує стійкість системи до 

змін у часі. 
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