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Abstract: This paper presents a comprehensive theoretical study of the mechanism of
generation of combined harmonics of the second and third orders, which arise as a result of collinear
cross-interaction of two primary directional Lamb waves in thin layered plates. The developed and
implemented procedure for measuring combined harmonics at certain mixing frequencies allowed us
to verify and confirm previously formulated theoretical predictions. In particular, it was established
that for effective generation of combined harmonics, simultaneous fulfillment of two key conditions
is necessary: the synchronism condition, which ensures phase coincidence of the interacting waves,
and the symmetry condition, which determines the nature of the spatial properties of the formed
harmonics. The results of numerical analysis showed that the frequency mixing response in the
sample is due exclusively to the collinear cross-interaction between two primary Lamb waves
propagating in the same direction. A cumulative effect of the increase in the amplitude of combined
harmonics with the propagation distance in the mixing zone was revealed, which indicates the
strengthening of nonlinear effects with an increase in the length of wave interaction. This effect is
fully consistent with theoretical predictions and confirms the physical nature of the process of
generating combined harmonics. Particular attention is paid to a detailed analysis of the symmetrical
properties of second-order harmonics. It was found that the combined harmonic mode of the second
order, which is generated at the total frequency, should have an antisymmetric character. This is due
to the specificity of the cross-interaction between the Al and SO modes, which have different
symmetrical properties. The lack of the appearance of a symmetrical mode of the combined
harmonic of the second order is explained by the impossibility of simultaneously fulfilling the
conditions of synchronism and symmetry, which imposes strict restrictions on the possible
generation modes. The proposed theoretical model allows us to describe the frequency response of
mixing, the conditions of internal resonance, as well as the features of symmetry that determine the
appearance of combined harmonics at certain mixing frequencies. The model takes into account the
physical process of generation of combined second- and third-order harmonics caused by the
collinear cross-interaction of two primary Lamb waves propagating in the sample. This approach
allows us to gain an understanding of the mechanism of nonlinear wave interaction in layered plates
and contributes to the development of nonlinear acoustics methods. The results obtained are of great
importance for practical application in the field of materials diagnostics, as they allow us to more
accurately determine the properties of materials and detect defects by analyzing nonlinear effects in
Lamb waves.

Keywords: combined harmonics, Lamb waves, collinear cross-interaction, synchronism
condition, internal resonance.

HOIMNPEHHS KEPOBAHUX XBWJIb IPYT'OI'O HOPAIKY Y
INAPYBATHUX IIVTIACTHHAX

Iucapenxo O. M.*

Y0oecvra oeporcasna akademis bydienuymea ma apximexmypu

AHoTanisi: Y poOoTi TNpeAcTaBIeHO KOMIUIEKCHE TEOPETUYHE MOCHIIKEHHS MeXaHi3My
reHepanii KOMOIHOBaHHMX TapMOHIK JPYroro Ta TPETbOro MOPSAKIB, 110 BUHHUKAIOTH Y Pe3yibTaTi
KOJIiIHEapHOi TepeKpecTHOi B3aeMOil JABOX NEPBMHHUX KepoBaHMX XBWiIb JlemOa B TOHKHX
miapyBaTHX IulacTHHax. Po3poOiieHa Ta peasi3oBaHa mpolenypa BHUMIpIOBaHHS KOMOIHOBaHMX

A. Pysarenko
https://doi.org/10.31650/2618-0650-2025-7-2-147-159 147




MexaHika Ta MaremMaTHuHi meromu / ‘ VI11/2/2025
Mechanics and mathematical methods = Crop. 147-159 / Page 147-159

TapMOHIK Ha BH3HAYEHUX YacTOTaX 3MIlIyBaHHs O3BOJIMJIA MEPEBIPUTH Ta MIATBEPAWTH paHilie
chopMynbOBaHi TEOpETHYHI NependadeHHs. 30KpemMa, BCTAHOBIICHO, IO U eeKTHBHOI reHepaii
KOMOIHOBaHMX TapMOHIK HEOOXiJHEe OJHOYACHE BWKOHAHHS JIBOX KIIOYOBHX YMOB: YMOBH
CHHXPOHHU3MY, siKa 3a0e3neuye (a3oBe CHIBIAAiHHS B3aEMOIIIOUUX XBWIb, TA YMOBH CHUMETPIi, IO
BHU3HAYAE XapaKTep MPOCTOPOBHX BIACTUBOCTEH YTBOPEHHX TapMOHIK. Pe3ymbTaTH 4YMCEIbHOro
aHaJi3y MoKa3aid, IO BiATyK 3MIilIyBaHHs 4acTOT y 3pa3Ky oOyMOBIIEHHH BUKIIOYHO KOJIiHEAPHUM
MEPEKPECTHUM B3a€EMOJIIE€I0 MK IBOMa EpBUHHUMH XBHIIsIMH JleM0a, siKi IOMIMPIOIOTHECS B OTHOMY
HanpsAMKy. BHABIEHO KyMynsTHBHHMN e(peKT HApOCTaHHA aMIUNTYyJ KOMOIHOBaHHMX TapMOHIK i3
BiJICTAHHIO MOUIMPEHHS Y 30Hi 3MIlllyBaHHSA, O CBIAYUTH MPO MOCHIICHHS HETIHIHHNX e(eKTiB MpH
301TbIIEHH] JOBXHHU B3aeMoAii XBWib. Llell edekT MOBHICTIO y3TrOIDKYEThCS 3 TEOPETUYHHUMHU
MPOTHO3aMU 1 MATBEPIKYE (I3MUHY NPUPOLY TNpollecy TeHepalii KOMOIHOBaHWX TapMOHIK.
OcobnuBy yBary MpUIUICHO JETAILHOMY aHalli3y CHMETPHYHUX BJIACTHBOCTEH TapMOHIK JIPyroro
MOpAAKY. 3’sCOBaHO, 110 KOMOIHOBaHa rapMOHIYHA MOJa JPYroro IMOPsJKY, sKa TeHePYEThCS Ha
CyMapHiii 4acTOTi, NIOBUHHA MaTH aHTHCUMETPUYHMI xapakrep. lle oO0OyMoBieHO crerudikor
nepeKpecTHoro B3aemonii Mk momamu Al Ta SO, siki MarOTh pi3HI CHMETPWUYHI BIACTHUBOCTI.
BigcyTHICTP TOSIBH CHMETPUYHOTO PEKUMY KOMOIHOBAHOI TapMOHIKH JpPYroro TMODPSIKY
MOSICHIOETHCS. HEMOXKJIMBICTIO OJTHOYACHOI'O BHWKOHAHHS YMOB CHHXPOHHM3MY Ta CHMETpii, IO
HaKJajae CyBopi OOMEXEHHS Ha MOXJIMBI PEKUMH TeHepallii. 3amporoHOBaHa TEOPETHYHA MOJIENb
JIO3BOJISIE ONMKMCATH YACTOTHUH BIATYK 3MIIIyBaHHS, YMOBH BHYTPINIHBOTO PE30HAHCY, a TaKOXK
0COOJIMBOCTI CUMETPIi, SIKi BU3HAYAIOTH MOsIBY KOMOIHOBaHMX TapPMOHIK Ha BH3HAYEHHX YacTOTaX
3MinryBaHHs. Mojenb BpaxoBye (ismyHHII Tporiec reHepailii KOMOIHOBaHUX TapMOHIK JIPyroro i
TPETHOTO TIOPS/IKIB, BUKIIMKAHUX KOJIIHEAPHUM TIEPEKPECTHUM B3a€EMOJIIEI0 JIBOX MEPBUHHUX XBUJIb
Jlem0a, 10 MOMMPIOIOTHCS B 3pa3Ky. Takuil MiaXij Jae 3MOry OTPHMATH PO3YMIHHS MeEXaHI3My
HENiHIMHOT B3aeMOJii XBHWJIb y IIAPYyBATHUX IUTACTHHAX 1 CIPHUSE PO3BUTKY METOJIB HETiHIHHOI
akycTuku. OTpUMaHi pe3yibTaTH MAalOTh BaXKJIMBE 3HAYEHHS JUII TPAKTHYHOTO 3aCTOCYBAHHS Y
chepl MarHOCTHKH MaTepialliB, OCKUIBKHA [O3BOJISIOTH OUTBIT TOYHO BHW3HAYATH BIIACTHBOCTI
MartepiaiiB Ta BUSABIIATH Ae(DEKTH IIITXOM aHaJli3y HEMiHIMANX e(eKTiB y XBHULIX JlemoOa.

KurouoBi cjioBa: koMOiHOBaHI TapMOHIKH, XBITI Jlem0a, KomiHeapHa TepeKpecTHa B3aEMOZIs,
YMOBA CHHXPOHHU3MY, BHYTPIIITHIN pe30HaHC.
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1 INTRODUCTION

The linear feature of ultrasonic wave propagation, while widely utilized in
nondestructive evaluation (NDE), is not sufficiently sensitive to detect microscopic
degradation or micro-damage within materials. This limitation arises because linear
ultrasonic techniques primarily respond to changes in bulk material properties, such as
velocity and attenuation, which often do not exhibit significant variation until damage has
progressed to a more advanced stage. In contrast, even very small imperfections or
microstructural changes—such as dislocations, micro-cracks, or voids—can induce
pronounced nonlinear elastic behavior in materials. These nonlinearities can manifest as
higher-order harmonic generation or modulation effects, which are orders of magnitude
larger than the intrinsic nonlinearity observed in intact, undamaged materials. Consequently,
the nonlinear ultrasonic response has emerged as a highly promising and sensitive approach
for the early detection and characterization of material degradation and micro-damage.

Over the past two decades, extensive research has demonstrated that nonlinear
ultrasonic methods can reveal subtle changes in material microstructure that remain
undetectable by conventional linear ultrasonic techniques. The sensitivity of nonlinear
ultrasonic measurements to microstructural defects stems from their ability to probe the
material’s nonlinear elastic constants, which are directly influenced by damage mechanisms
at the microscopic scale. This enhanced sensitivity enables the detection of incipient
damage, fatigue, and other forms of degradation well before macroscopic failure occurs,
thereby providing critical information for predictive maintenance and structural health
monitoring.

Among the various nonlinear ultrasonic techniques, the use of Lamb waves has gained
significant attention due to their unique propagation characteristics in plate-like structures.
Lamb waves are guided elastic waves that travel along thin plates and exhibit multiple
modes with dispersive behavior, making them highly versatile for interrogating complex
geometries and layered materials. The nonlinear ultrasonic Lamb wave approach combines
the inherent advantages of Lamb wave inspection—such as long-range propagation and mode
selectivity—with the high sensitivity of nonlinear acoustic measurements. This synergy offers
a powerful tool for evaluating material nonlinearity and detecting micro-damage in
engineering components like aircraft skins, pipelines, and composite laminates.

To date, theoretical investigations into the nonlinear behavior of ultrasonic Lamb waves
in isotropic plates have employed perturbation approximations and modal expansion
analyses to model higher-harmonic generation phenomena. These studies provide
fundamental insights into the mechanisms by which nonlinear Lamb waves interact with
material imperfections and how higher harmonics evolve during wave propagation.
Understanding these nonlinear interactions is essential for optimizing experimental setups,
interpreting measurement data, and developing robust diagnostic criteria for damage
assessment. As research progresses, the nonlinear ultrasonic Lamb wave approach is poised
to become an integral part of advanced NDE methodologies, offering unprecedented
sensitivity and reliability in the evaluation of material integrity.

2 ANALYSIS OF LITERARY DATA AND RESOLVING THE PROBLEM

The generation of higher harmonics and the possibility of symmetric or antisymmetric
Lamb waves at higher harmonics have in layered structures been described in numerous
studies [1, 2]. This problem was addressed using displacement gradient shaping in modal
decomposition [3, 4]. As shown in these studies, the second harmonic of the propagation of
the primary (fundamental) Lamb wave exhibits a cumulative effect under conditions of
phase velocity matching and non-zero power transfer from the primary to the second
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harmonic. Experimental studies were carried out to confirm the theoretical predictions, and
the results showed that Lamb waves can grow with propagation distance [5, 6].

However, most of the previous studies focused on the generation of higher harmonics
of primary Lamb waves with a single frequency. In contrast, there are few studies that
discuss the frequency mixing response caused by the collinear interaction of two primary
Lamb waves with different frequencies [7, 8]. The interaction of two primary waves with
fixed frequencies in nonlinear materials can generate combined harmonics with different
frequencies [9, 10]. The possibility of using collinear mixing of body waves to measure
acoustic nonlinearity has been considered as a model approach to solving the problem [11,
12]. In addition, the identification of local plastic damage using the nonlinear response of
scanning collinear mixing of body waves has been investigated [13, 14]. It has been shown
that non collinear mixing of body waves can be used to assess ductility and fatigue,
respectively [15, 16]. Nonlinear mixing of ultrasonic waves can be used to assess the
physical aging of thermoplastics and the curing of epoxy resins [17, 18]. Necessary and
sufficient conditions for the generation of resonant harmonic modes by mixing two
propagating waves in solids with quadratic elastic nonlinearity were also discussed [19, 20].
The frequency response of mixing offers some unique advantages over nonlinear ultrasonic
technology based on higher harmonic generation, such as frequency selectivity, which
allows one to intentionally avoid receiving unexpected harmonic components induced by
instrumentation systems. Furthermore, the spatial selectivity of scanning wave mixing can
be easily exploited to locate the damage region in a material.

In this paper, a theoretical model is presented to describe the frequency mixing
response caused by the collinear cross-talk of two primary Lamb waves, as well as the
physical process of generating the second- and third-order combined harmonics. Based on
this theoretical framework, the internal resonance conditions, including the synchronism and
symmetry features for the generation of the second- and third-order combined harmonics by
two primary Lamb waves, will be analyzed. In addition, the possibility of predicting the
existence of the second- and third-order combined harmonics at certain mixing frequencies
needs to be separately considered. The possibility of generating the second- and third-order
combined harmonics caused by the collinear cross-talk of two primary Lamb waves also
needs to be substantiated.

3 PURPOSE AND TASKS OF THE STADY
The equation of motion for elastic wave propagation in an isotropic, homogeneous,
nonlinear elastic material is given by

2

po%+ 1V (W)~ (2420 V (V) =Y (v),

where v is the mechanical displacement; 4 and x are the second-order elastic constants;
P, is the initial mass density of material.

Functional dependency Y =Y (v) nonlinear term with respect to v. The perturbation
approximation can be used to solve nonlinear wave equations. The solution for v can be
approximated as the sum of the primary (fundamental or first-order) wave v'*, the second-
order wave v®  and the third-order wave v® | i.e.

V=V +vZ+V3,

These equations can be decomposed into the following three second order guided wave
equations:
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2,,()

Po—5+ uViv® —(2+y)V(V-v(l)): 0,

82 (2)

o + VP —(/1+,u)V(V-v(Z)):Y‘2’,

+ 1V —(/1+y)V(V-v(3)):Y(3),

where Y@ =Y[v®] and Y® =Y [v(l),v(ﬂ are the second and third-order nonlinear terms,

respectively, which can be obtained from Y =Y (v) just using v¢¥ =v® +v® instead of v.

In this paper, the calculation method has as a working object a reference configuration
for the analysis of guided Lamb wave propagation in a single elastic plate, where the
material is assumed to be homogeneous, without dispersion and attenuation of waves, with
weak elastic nonlinearity. Before performing the calculations, it was assumed that in the
plate material Lamb waves propagate along the axis of a fixed p-axis of symmetry oz, and
the corresponding mechanical displacements are considered only in the perpendicular plane

yz.
Based on this consideration, the formal solutions of two primary Lamb waves with

different frequencies propagating along the oz axis are given by v, =v,(y) exp (j(k,z-o,t))
and v, =v, (y)exp((k,z—a,t)), respectively, which satisfy the stress-free boundary
conditions. Here, v_(y) and v,(y) are the field functions of the two primary Lamb waves
with angular frequencies @, and @, and wave numbers k, and k, , respectively.

Clearly, v, +Vv, corresponds the primary wave v®. The second order self- and cross-
nteractions of the two primary waves v, and v, can generate the second-order wave v,
while the third-order self- and cross-interactions of v, and v, generate the third-order wave
v®. Considering that the two primary Lamb waves v, and v, propagate in the same
direction, all the self- and cross-interactions associated with v, and v, are collinear.

Considering all possible self- and cross-interactions of the two primary Lamb waves v,

and v, propagating in the plate, the nonlinear terms Y® and Y® can be formally
decomposed as

Y@ _ y(za)exp[Zj (k,z _wat)] + y(2b)exp[2j (kyz— a)bt)] +
+y @ Dexpl j[ (k, £k, ) 2~ (0, 2@, )]},

and
YO = y®exp[3j(k,z-a,t) |+ y®exp[3j(k,z—apt) |+
+y @ ®exp [ (2k, £k, ) 2-(20, + @, )t ]} +
+y @ ®exp! [ (k, £ 2k, ) 2—(o, +2a,)t]}.

(2a) ,(2b)

Here, y©@, y@) yG ‘and y© are the second- and third order driving forces induced
by the self-interactions of primary waves v, and v,, respectively, while y®® y®*® “and
y@? are induced by the second- and third-order cross-interactions of v, and v, .

A. Pysarenko
https://doi.org/10.31650/2618-0650-2025-7-2-147-159 151




MexaHika Ta MaremMaTHuHi meromu / | ; VI11/2/2025
Mechanics and mathematical methods e N Crop. 147-159 / Page 147-159

For v, and v, propagating in the plate, in addition to the existence of Y® :Y[v(l’}
and Y® =Y [v‘l),v‘z)] inside the solid plate, second-and third-order traction stress tensors

$@.n, and S@.n exist at the two surfaces of the plate (+h), which can be formally
expressed as

$®.n =5 .nexp[ 2j(k,z-a,t) [+s® -nexp| 2j(k,z-ayt) |+
4 g(@h) | nxexp{ j [(ka £k, ) Z —(a)a * o, )t]} )

and
$@.n, =5 .nexp[3j(k,z—a,t) |+ -nexp[3j(k,z-mpt) ]+
+s2) . exp { i[(2k, £k,) 2~ (20, £ o, )t}} +
+s@2) . exp { i[(k, 22k, )2~ (o, + 20, )t}}

In these equations n, and n, are the unit vector along the oy and oz axes, respectively,

and S®and S® correspond to the quadric and cubic terms, respectively, in the expression
of the first Piola—Kirchhoff stress tensor. Specifically, s®.n_, s®.n_, s®.n , and
s® .n,_ are the second- and third order traction stress tensors at the surfaces induced by the
self-interactions of primary wave v,and v,, respectively, while s®*® .n, s®*.n  and
+s@*.n_are induced by the second- and third- order cross-interactions of v_and v,.The
expressions for s @ and s are extremely lengthy for any modes v, and v, .
According to the modal-expansion approach for wave guide excitation, the bulk driving
forces Y©®,Y® and the surface stress tensors S®-n_and S®.n_ can be thought of as a

bulk source and a surface source, respectively, and their function is to generate a series of
second and third-order Lamb waves propagating in the stress-free plate. In the present
investigation, we focus on the combined harmonic modes generated at the mixing

frequency. Thus, only the nonlinear terms y®*® and s®*.n_ are taken into account for

generating second-order combined harmonics at the mixing frequency ©® = o, + @, , where

as the self-interaction terms of the two primary waves are neglected for the analysis of the
second-order nonlinear wave problem. Based on this consideration, we focus on analyzing

the combined harmonic wave v® at o® =, +®,, which is generated by y®* and
s@.n .

We construct the solution of the second-order combined harmonic v? =v!***) via a
modal-expansion analysis. The field caused by mixing the two primary Lamb waves (i.e.,
v,and v,) can be written as a linear combination of a series of Lamb waves at the mixing

frequency 0 = o, + o,
v = TA (2 (Y)exp[ (@, £a)t].

where v,(n‘”ai“’“) is the field function of the mth Lamb wave at the mixing frequency »®
with wave number k'?, and A (z) is the corresponding expansion coefficient. Similar to
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the analysis of second-harmonic generation by the primary Lamb wave, the equation
governin A, (z) is given by

d . .
4Ymm |:E_ Jkrf):| An (Z) = [ys(,z()m) + ylg,z()m):'explij(ka * kb)z]’

where

h. (O al
Yortmy = I,hJ (0, =0, )|:Vr(n ) (X)] y =y
Y = i@, £ )V 0]y n, |1

are the excitation functions due to the bulk driving force y©*.

The quantity Y, is the average power flow per unit width along the ox axis for the m™
Lamb wave at the mixing frequency »® = @, + @, . The formal expression of Y, is

Yo =Re%fhh[—1(wai%)]

where T, () =n,T,n,, Ty (X) =0,T,n,, T, is the stress tensor related to v{™**)(x).

x'm''z “(m)zz z'm''z?

Fixed coefficient A, (z) can be formally expressed as

(2) (2) .
An(Z) _ I:ys(mé)‘-Y_'_ yb(m):l Sln(AAmZ) exp[j(krf] +Am)2j|,

mm m

where

k +k )—k®
Am _ I:( a b) m } '
2
Next, we analyzed the effect of synchronism (also called phase matching between the
primary wave and the m™ combined harmonic mode at the frequency ©® =, *®,. The
magnitude of the m™™ combined harmonic mode is closely related to A_ . Thus, the effect of

synchronism on the generation of the m™ combined harmonic mode can be revealed directly
by the dependence of A, (z) on the factor sin(A,z)/A, . For the synchronism condition

[ie., k2 =k, tk ] at ©? =, +®,, the factor sin(A,z)/A, =z, and the magnitude of the
m™ combined harmonic mode increases linearly with z provided yi, + i), #0. For
k2 =k, +k, and yo, +yi) =0, the magnitude of |A,(z)|-[sin(A,z)| remains bounded
and oscillates with a spatial periodicity A, where A is generally expressed as z /A, .

We now focus on the analysis of third-order combined harmonics at the mixing

frequencies ©® = 2w, + @, and w, + 2@,. Thus, we neglect the third-order terms of the self

interactions of two primary waves. To analyze the generation of the third-order combined
harmonics, the expression for nonlinear terms can, respectively, be simplified as

v y(zaib)exp{j[(zka ikb)z —(2(()a ia)b)t:l}+
+y(ai2b)exp{j|:(ka +2k, )z - (e, iZa)b)t]},

and
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S@.n, =s®* .n expj[(2k, +k,)z— (2w, + v, )t]+

+s2) . n exp { i[(k, £2k,) 2~ (o, £ 20, )t]} .

Referring to the process of analyzing second-order combined harmonics, the total fields
of third-order combined harmonics generated by y®@*® s . y@2) gand @2 .n  can
also be written as a linear combination of a series of Lamb waves at the mixing frequencies
o® =20, +w, and o, + 2o,

V(3) — V(Zwaiwn) +v(wai2(un)

y@ata) _ Zap (Z)Vf%ﬂ%) (X)exp [— 1w, + %)t] ,
P

Vo) (x) V@) =3 )y ) (X)exp [ (@, £ 20,)t]
9q
where vZ**%)(x) and v{**** are the field functions of the p™ and g™ Lamb wave at the
mixing frequencies 2w, t@, and @, +2w,, respectively, and «,(z) and g, (z) the

corresponding expansion coefficients.
The analysis of the second-order combined harmonics leads to the equations governing
a,(z) and B, (z) can be given by

d . .
a4, {E— ka’}ap(z) = [yf()p) + yt(,e’(’p)]exp[] (2K, £k,) z] ,
and
d . .
4y, [E_ kaf)}ap(z) = [yf()p) + y,g3()p)]exp[1(ka + 2kb)z] ,

where k& and k" are, respectively, the wavenumbers of the Lamb waves at the mixing

frequencies 2w, + @, and w, + 2w, and Y, and Y, , are the corresponding average power

flow per unit Wldth along the ox axis, whose formal expressions are, respectively,

n V(Za)air(ub) (X)T (X)
xVp (p)xz
,=Re= I [ (20, + o, } (ko) ) dy,

(0T 1
T (3)
DT (9]

1 . X
Yqﬂ=ReEJ.ih[—J(a)ai2a)b)] F@

where T, (x)=nTn,, T,,(X)=nTn,, (r=p,q); T is the stress tensor related to

(2w, ) (wa+2a,)
vy (x) or v, (x).

It is important to note that the third-order combined harmonic modes at the mixing
frequencies 2w, + @, and @, =2, are induced by the third order cross-interaction between
the two primary Lamb waves v, and v,. Only symmetric second harmonics can be

generated by the self-interaction of primary Lamb waves with either asymmetry or
antisymmetry feature.
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Numerical analysis showed that, the third-order combined harmonic v®***) at the
frequency 2w, + @, has the same symmetry feature as the primary Lamb wave v, , while the

symmetry feature of v(****) at the frequency , + 2, depends only on that of the primary

Lamb wave v,. Similarly, both the synchronism and symmetry feature should be

simultaneously considered for predicting the existence of cumulative third-order combined
harmonics generated by the collinear mixing of two primary Lamb waves. The discovered
dependencies, both synchronism and symmetry, must be taken into account simultaneously
to predict the existence of so-called cumulative combined harmonics of the third order. Such
harmonics are generated by collinear mixing of two primary Lamb waves.

4 BASIC RESULTS

Verification of the theoretically discovered dependencies was performed using known
experimental studies of the frequency mixing responses of two primary Lamb waves in an
aluminum plate with a thickness of h=0,97mm, a length of L =1200mm along the

propagation direction and a width of h =480mm perpendicular to the propagation
direction.

f MHz
B~
O

O E L L L L 1 L L L L 1 L L L L 1 L L L L | I L L L
0 1 2 3 a 5

k, mm

Fig.1. Lamb wave dispersion curves for second-order harmonic mode

At longitudinal and transverse velocities of the plate material (aluminum) set to 6.395
km/s and 3.240 km/s. The dispersion curves of Lamb wave propagation for determining the
combined harmonic modes of the second and third order satisfying the synchronism
condition are demonstrated in Fig. 1 and 2. In particular, two primary Lamb waves,
including the A1 mode at a frequency of f, = 2.6 MHz and the SO mode at f, = 1.35 MHz,
are determined for collinear mixing of wave propagation.
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’

wy

Fig.2. Lamb wave dispersion curves for third-order harmonic mode
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The frequencies and phase velocities of the two selected primary Lamb waves, as well as
the combined harmonic modes of the second and third orders that satisfy the synchronism
condition, can be determined using the dispersion curves of Lamb wave propagation shown
in Fig. 3.

-y
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T
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[
=
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Fig.3. Phase velocity (vp) dispersion curves of Lamb waves

5 DISCUSSION OF THE RESULTS OF THE STUDY

The dispersion curves shown in Fig. 1 indicate that the combined second-order
harmonic mode (i.e., S1 mode) at the sum frequency of 4.0 MHz satisfies the phase-

matching condition (i.e., k@ =k, +k, at v®? =v_+v,). On the other hand, it can be argued
that there is a clear difference between the wave number of the Lamb wave at v® =v_ —v,

and the value (k, —k,), which means that the second-order difference frequency mode does

not satisfy the phase-matching condition.
The third-order combined harmonic modes satisfying the synchronism condition are

shown in Fig. 2. It should be noted that the wave numbers k_,k,k® and k©® at

V,,V,,V, +Vv,and 2v, £v, or (v, +2v,) depend on the values of the longitudinal and

transverse velocities of the plate material.

The results of the calculation methods indicate that the relative error of the calculated
values may depend on the longitudinal and transverse velocities of propagation of the Lamb
wave modes in the plate material. The reaction of mixing the Lamb waves' frequencies at
frequencies 2v, £v, and v, £2v, was detected. It can be considered that it approximately

satisfies the synchronism criterion for generating third-order combined harmonic modes.
Obviously, the third-order combined harmonic modes at the frequency 2v, +v, satisfy the

synchronism condition better than at the frequency v, £2v, .

It can be concluded that for the two selected primary Lamb waves, the synchronism of
the generation of combined harmonic modes of the second and third order is considered
simultaneously, which means that possible frequency mixing reactions of the second and
third orders can be observed simultaneously. The frequency mixing reaction of Lamb waves
is indeed manifested for the selected pair of modes.

However, it should be noted that although the combined second-order harmonic mode
(ie., the S1 mode) at the sum frequency satisfies the synchronism condition, the
corresponding amplitude is not displayed on the amplitude-frequency curve. The analysis
showed that in addition to the synchronism condition, the required symmetry condition must
be simultaneously satisfied for the combined second-order harmonic mode to be generated.
In particular, the combined second-order harmonic mode generated at the sum frequency
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must be antisymmetric rather than symmetric due to the cross-talk between the Al and SO
modes. Thus, the absence of the appearance of the combined second-order harmonic mode
should be explained by the fact that the synchronism and symmetry conditions cannot be
simultaneously achieved.

6 CONCLUSIONS

In this paper, the frequency mixing response caused by the collinear cross-talk of two
primary Lamb waves with different frequencies is theoretically analyzed and compared with
known experimental results. A theoretical basis for the frequency mixing response caused by
the collinear mixing of two primary Lamb waves is established using the perturbation
approximation and the normal mode decomposition method for waveguide excitation. Based
on the theoretical basis, we discuss the internal resonance conditions for the generation of
second- and third-order combined harmonics by two primary Lamb waves, and predict the
existence of second- and third-order combined harmonics at different mixing frequencies.

To verify the theoretical prediction, the results of the combined harmonics
measurements of two primary Lamb waves at certain mixing frequencies are used. The
experimental results show that two conditions must be simultaneously satisfied for the
combined harmonics to be generated. The first condition is synchronization, and the second
condition is the symmetry property. In addition, it can be stated that the frequency mixing
response is due only to the collinear cross-talk between the two primary Lamb waves.

In addition, the previously predicted cumulative effect of combined harmonics
generated with the propagation distance in the mixing zone of two primary Lamb waves
propagating in the sample was found. This effect is consistent with the effect of the
appearance of combined harmonics at certain mixing frequencies. Thus, this work provides
a physical understanding of the generation of combined harmonic modes by the collinear
cross-talk of two primary Lamb waves.
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