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Abstract: This paper presents a comprehensive theoretical study of the mechanism of 

generation of combined harmonics of the second and third orders, which arise as a result of collinear 

cross-interaction of two primary directional Lamb waves in thin layered plates. The developed and 

implemented procedure for measuring combined harmonics at certain mixing frequencies allowed us 

to verify and confirm previously formulated theoretical predictions. In particular, it was established 

that for effective generation of combined harmonics, simultaneous fulfillment of two key conditions 

is necessary: the synchronism condition, which ensures phase coincidence of the interacting waves, 

and the symmetry condition, which determines the nature of the spatial properties of the formed 

harmonics. The results of numerical analysis showed that the frequency mixing response in the 

sample is due exclusively to the collinear cross-interaction between two primary Lamb waves 

propagating in the same direction. A cumulative effect of the increase in the amplitude of combined 

harmonics with the propagation distance in the mixing zone was revealed, which indicates the 

strengthening of nonlinear effects with an increase in the length of wave interaction. This effect is 

fully consistent with theoretical predictions and confirms the physical nature of the process of 

generating combined harmonics. Particular attention is paid to a detailed analysis of the symmetrical 

properties of second-order harmonics. It was found that the combined harmonic mode of the second 

order, which is generated at the total frequency, should have an antisymmetric character. This is due 

to the specificity of the cross-interaction between the A1 and S0 modes, which have different 

symmetrical properties. The lack of the appearance of a symmetrical mode of the combined 

harmonic of the second order is explained by the impossibility of simultaneously fulfilling the 

conditions of synchronism and symmetry, which imposes strict restrictions on the possible 

generation modes. The proposed theoretical model allows us to describe the frequency response of 

mixing, the conditions of internal resonance, as well as the features of symmetry that determine the 

appearance of combined harmonics at certain mixing frequencies. The model takes into account the 

physical process of generation of combined second- and third-order harmonics caused by the 

collinear cross-interaction of two primary Lamb waves propagating in the sample. This approach 

allows us to gain an understanding of the mechanism of nonlinear wave interaction in layered plates 

and contributes to the development of nonlinear acoustics methods. The results obtained are of great 

importance for practical application in the field of materials diagnostics, as they allow us to more 

accurately determine the properties of materials and detect defects by analyzing nonlinear effects in 

Lamb waves.  

Keywords: combined harmonics, Lamb waves, collinear cross-interaction, synchronism 

condition, internal resonance.  

ПОШИРЕННЯ КЕРОВАНИХ ХВИЛЬ ДРУГОГО ПОРЯДКУ У 

ШАРУВАТИХ ПЛАСТИНАХ  

Писаренко О. М. 1  
1Одеська державна академія будівництва та архітектури 

 

Анотація: У роботі представлено комплексне теоретичне дослідження механізму 

генерації комбінованих гармонік другого та третього порядків, що виникають у результаті 

колінеарної перекрестної взаємодії двох первинних керованих хвиль Лемба в тонких 

шаруватих пластинах. Розроблена та реалізована процедура вимірювання комбінованих 
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гармонік на визначених частотах змішування дозволила перевірити та підтвердити раніше 

сформульовані теоретичні передбачення. Зокрема, встановлено, що для ефективної генерації 

комбінованих гармонік необхідне одночасне виконання двох ключових умов: умови 

синхронизму, яка забезпечує фазове співпадіння взаємодіючих хвиль, та умови симетрії, що 

визначає характер просторових властивостей утворених гармонік. Результати чисельного 

аналiзу показали, що відгук змішування частот у зразку обумовлений виключно колінеарним 

перекрестним взаємодією між двома первинними хвилями Лемба, які поширюються в одному 

напрямку. Виявлено кумулятивний ефект наростання амплітуди комбінованих гармонік із 

відстанню поширення у зоні змішування, що свідчить про посилення нелінійних ефектів при 

збільшенні довжини взаємодії хвиль. Цей ефект повністю узгоджується з теоретичними 

прогнозами і підтверджує фізичну природу процесу генерації комбінованих гармонік. 

Особливу увагу приділено детальному аналізу симетричних властивостей гармонік другого 

порядку. З’ясовано, що комбінована гармонічна мода другого порядку, яка генерується на 

сумарній частоті, повинна мати антисиметричний характер. Це обумовлено специфікою 

перекрестного взаємодії між модами A1 та S0, які мають різні симетричні властивості. 

Відсутність появи симетричного режиму комбінованої гармоніки другого порядку 

пояснюється неможливістю одночасного виконання умов синхронизму та симетрії, що 

накладає суворі обмеження на можливі режими генерації. Запропонована теоретична модель 

дозволяє описати частотний відгук змішування, умови внутрішнього резонансу, а також 

особливості симетрії, які визначають появу комбінованих гармонік на визначених частотах 

змішування. Модель враховує фізичний процес генерації комбінованих гармонік другого і 

третього порядків, викликаних колінеарним перекрестним взаємодією двох первинних хвиль 

Лемба, що поширюються в зразку. Такий підхід дає змогу отримати розуміння механізму 

нелінійної взаємодії хвиль у шаруватих пластинах і сприяє розвитку методів нелінійної 

акустики. Отримані результати мають важливе значення для практичного застосування у 

сфері діагностики матеріалів, оскільки дозволяють більш точно визначати властивості 

матеріалів та виявляти дефекти шляхом аналізу нелінійних ефектів у хвилях Лемба. 

Ключові слова: комбіновані гармоніки, хвилі Лемба, колінеарна перекрестна взаємодія, 

умова синхронизму, внутрішній резонанс. 
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1 INTRODUCTION 

The linear feature of ultrasonic wave propagation, while widely utilized in 

nondestructive evaluation (NDE), is not sufficiently sensitive to detect microscopic 

degradation or micro-damage within materials. This limitation arises because linear 

ultrasonic techniques primarily respond to changes in bulk material properties, such as 

velocity and attenuation, which often do not exhibit significant variation until damage has 

progressed to a more advanced stage. In contrast, even very small imperfections or 

microstructural changes–such as dislocations, micro-cracks, or voids–can induce 

pronounced nonlinear elastic behavior in materials. These nonlinearities can manifest as 

higher-order harmonic generation or modulation effects, which are orders of magnitude 

larger than the intrinsic nonlinearity observed in intact, undamaged materials. Consequently, 

the nonlinear ultrasonic response has emerged as a highly promising and sensitive approach 

for the early detection and characterization of material degradation and micro-damage. 

Over the past two decades, extensive research has demonstrated that nonlinear 

ultrasonic methods can reveal subtle changes in material microstructure that remain 

undetectable by conventional linear ultrasonic techniques. The sensitivity of nonlinear 

ultrasonic measurements to microstructural defects stems from their ability to probe the 

material’s nonlinear elastic constants, which are directly influenced by damage mechanisms 

at the microscopic scale. This enhanced sensitivity enables the detection of incipient 

damage, fatigue, and other forms of degradation well before macroscopic failure occurs, 

thereby providing critical information for predictive maintenance and structural health 

monitoring. 

Among the various nonlinear ultrasonic techniques, the use of Lamb waves has gained 

significant attention due to their unique propagation characteristics in plate-like structures. 

Lamb waves are guided elastic waves that travel along thin plates and exhibit multiple 

modes with dispersive behavior, making them highly versatile for interrogating complex 

geometries and layered materials. The nonlinear ultrasonic Lamb wave approach combines 

the inherent advantages of Lamb wave inspection–such as long-range propagation and mode 

selectivity–with the high sensitivity of nonlinear acoustic measurements. This synergy offers 

a powerful tool for evaluating material nonlinearity and detecting micro-damage in 

engineering components like aircraft skins, pipelines, and composite laminates. 

To date, theoretical investigations into the nonlinear behavior of ultrasonic Lamb waves 

in isotropic plates have employed perturbation approximations and modal expansion 

analyses to model higher-harmonic generation phenomena. These studies provide 

fundamental insights into the mechanisms by which nonlinear Lamb waves interact with 

material imperfections and how higher harmonics evolve during wave propagation. 

Understanding these nonlinear interactions is essential for optimizing experimental setups, 

interpreting measurement data, and developing robust diagnostic criteria for damage 

assessment. As research progresses, the nonlinear ultrasonic Lamb wave approach is poised 

to become an integral part of advanced NDE methodologies, offering unprecedented 

sensitivity and reliability in the evaluation of material integrity. 

2 ANALYSIS OF LITERARY DATA AND RESOLVING THE PROBLEM 

The generation of higher harmonics and the possibility of symmetric or antisymmetric 

Lamb waves at higher harmonics have in layered structures been described in numerous 

studies [1, 2]. This problem was addressed using displacement gradient shaping in modal 

decomposition [3, 4]. As shown in these studies, the second harmonic of the propagation of 

the primary (fundamental) Lamb wave exhibits a cumulative effect under conditions of 

phase velocity matching and non-zero power transfer from the primary to the second 
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harmonic. Experimental studies were carried out to confirm the theoretical predictions, and 

the results showed that Lamb waves can grow with propagation distance [5, 6]. 

However, most of the previous studies focused on the generation of higher harmonics 

of primary Lamb waves with a single frequency. In contrast, there are few studies that 

discuss the frequency mixing response caused by the collinear interaction of two primary 

Lamb waves with different frequencies [7, 8]. The interaction of two primary waves with 

fixed frequencies in nonlinear materials can generate combined harmonics with different 

frequencies [9, 10]. The possibility of using collinear mixing of body waves to measure 

acoustic nonlinearity has been considered as a model approach to solving the problem [11, 

12]. In addition, the identification of local plastic damage using the nonlinear response of 

scanning collinear mixing of body waves has been investigated [13, 14]. It has been shown 

that non collinear mixing of body waves can be used to assess ductility and fatigue, 

respectively [15, 16]. Nonlinear mixing of ultrasonic waves can be used to assess the 

physical aging of thermoplastics and the curing of epoxy resins [17, 18]. Necessary and 

sufficient conditions for the generation of resonant harmonic modes by mixing two 

propagating waves in solids with quadratic elastic nonlinearity were also discussed [19, 20]. 

The frequency response of mixing offers some unique advantages over nonlinear ultrasonic 

technology based on higher harmonic generation, such as frequency selectivity, which 

allows one to intentionally avoid receiving unexpected harmonic components induced by 

instrumentation systems. Furthermore, the spatial selectivity of scanning wave mixing can 

be easily exploited to locate the damage region in a material. 

In this paper, a theoretical model is presented to describe the frequency mixing 

response caused by the collinear cross-talk of two primary Lamb waves, as well as the 

physical process of generating the second- and third-order combined harmonics. Based on 

this theoretical framework, the internal resonance conditions, including the synchronism and 

symmetry features for the generation of the second- and third-order combined harmonics by 

two primary Lamb waves, will be analyzed. In addition, the possibility of predicting the 

existence of the second- and third-order combined harmonics at certain mixing frequencies 

needs to be separately considered. The possibility of generating the second- and third-order 

combined harmonics caused by the collinear cross-talk of two primary Lamb waves also 

needs to be substantiated. 

3 PURPOSE AND TASKS OF THE STADY 

The equation of motion for elastic wave propagation in an isotropic, homogeneous, 

nonlinear elastic material is given by  

     
2

0 2
2 v ( ),

v
v Y v

t
   


       


 

where    v  is the mechanical displacement;   and    are the second-order elastic constants; 

0  is the initial mass density of material. 

 Functional dependency ( )Y Y v  nonlinear term with respect to    v . The perturbation 

approximation can be used to solve nonlinear wave equations. The solution for  can be 

approximated as the sum of the primary (fundamental or first-order) wave , the second-

order wave  (2)v , and the third-order wave (3)v , i.e. 

1 2 3v v v v   . 

 These equations can be decomposed into the following three second order guided wave 

equations: 
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   2
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2

0,
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t

   
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      
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   
(2)

(2) (
2

2 (2)

2

2)

0 ,
v

v v Y
t

   


      


 

   
(3)

(3) (3) (

2

)
2

32

0 ,
v

v v Y
t

   


      


 

where (2) (1)[ ]Y Y v  and (3) (1) (2),Y Y v v      are the second and third-order nonlinear terms, 

respectively, which can be obtained from ( )Y Y v  just using (2) (3)(1)v v v   instead of v . 

 In this paper, the calculation method has as a working object a reference configuration 

for the analysis of guided Lamb wave propagation in a single elastic plate, where the 

material is assumed to be homogeneous, without dispersion and attenuation of waves, with 

weak elastic nonlinearity. Before performing the calculations, it was assumed that in the 

plate material Lamb waves propagate along the axis of a fixed p-axis of symmetry oz, and 

the corresponding mechanical displacements are considered only in the perpendicular plane 

yz. 

 Based on this consideration, the formal solutions of two primary Lamb waves with 

different frequencies propagating along the oz axis are given by exp (j(k z- t))(y) a a a av v    

and exp(j(k z t))(y)b b b bv v   , respectively, which satisfy the stress-free boundary 

conditions. Here, ( )av y  and ( )bv y are the field functions of the two primary Lamb waves 

with angular frequencies a   and b  and wave numbers ak  and bk , respectively. 

 Clearly, a bv v  corresponds the primary wave (1)v . The second order self- and cross-

nteractions of the two primary waves av  and bv  can generate the second-order wave (2)v , 

while the third-order self- and cross-interactions of av  and bv  generate the third-order wave 
(3)v . Considering that the two primary Lamb waves av  and bv  propagate in the same 

direction, all the self- and cross-interactions associated with av  and bv  are collinear. 

 Considering all possible self- and cross-interactions of the two primary Lamb waves av  

and bv  propagating in the plate, the nonlinear terms (2)Y  and (3)Y  can be formally 

decomposed as 

   

    )

(2) (2 2 )

(

) (2 2

,

a b

a a b b

a

a b

b a b

Y y exp j k z t y exp j k z t

y exp j k k z t

 

 

          

     

 

and 

   

    

    

(3) (3 )

(2 )

(

(3 )

2 )

3 3

2 2

2 2 .

a

a a b b

a b a

b

b

a

b

a b

a

b a b

Y y exp j k z t y exp j k z t

y exp j k k z t

y exp j k k z t

 

 

 





          

      

     

 

 

 Here, (2 ) (2 ) (3 ), ,a b ay yy , and (3 )by are the second- and third order driving forces induced 

by the self-interactions of primary waves av  and bv , respectively, while ( ) (2 ),a b a byy   , and 

( 2 )a by   are induced by the second- and third-order cross-interactions of av  and bv . 
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 For 
av  and 

bv  propagating in the plate, in addition to the existence of (2) (1)Y Y v     

and (2) (1) (2),  Y Y v v     inside the solid plate, second-and third-order traction stress tensors 

(2)

yS n  and 
(3)

yS n exist at the two surfaces of the plate ( )h , which can be formally 

expressed as 

   

    

(2) (2 ) (2 )

( )

2 2

,

x x a

x

a

a

a x b b

a b

b

a

b

b

S n s n exp j k z t s n exp j k z t

s n exp j k k z t

 

 

          

   

 

   


 

and 

   

    

    

(3 ) (3 )

( )

(

2

( 2 )

3) 3 3

2 2

2 2 .

a b

x x a a x b b

a b

x a b a b

a b

x a b a b

S n s n exp j k z t s n exp j k z t

s n exp j k k z t

s n exp j k k z t

 

 

 





          

      

   









  



 

 In these equations xn  and yn are the unit vector along the oy and oz axes, respectively, 

and (2)S and (3)S  correspond to the quadric and cubic terms, respectively, in the expression 

of the first Piola–Kirchhoff stress tensor. Specifically, (2 )

x

as n  , (2 )b

xs n , (3 )

x

as n , and 
(3 )b

xs n  are the second- and third order traction stress tensors at the surfaces induced by the 

self-interactions of primary wave av and bv , respectively, while ( ) ,a b

xs n   (2 )

x

a bs n  , and 
( 2 )

x

a bs n   are induced by the second- and third- order cross-interactions of av and bv .The 

expressions for ( ) (2 ), ,a b a bss    and ( 2 )a bs   are extremely lengthy for any modes av and bv . 

According to the modal-expansion approach for wave guide excitation, the bulk driving 

forces (2) (3),Y Y and the surface stress tensors (2)

xS n  and (3)

xS n  can be thought of as a 

bulk source and a surface source, respectively, and their function is to generate a series of 

second and third-order Lamb waves propagating in the stress-free plate. In the present 

investigation, we focus on the combined harmonic modes generated at the mixing 

frequency. Thus, only the nonlinear terms ( )a by   and ( )a b

xs n   are taken into account for 

generating second-order combined harmonics at the mixing frequency (2)

a b    , where 

as the self-interaction terms of the two primary waves are neglected for the analysis of the 

second-order nonlinear wave problem. Based on this consideration, we focus on analyzing 

the combined harmonic wave (2)v  at (2)

a b    , which is generated by ( )a by   and 
( )

x

a bs n  . 

 We construct the solution of the second-order combined harmonic 
 2 a bv v
 

  via a 

modal-expansion analysis. The field caused by mixing the two primary Lamb waves (i.e., 

av and bv ) can be written as a linear combination of a series of Lamb waves at the mixing 

frequency (2)

a b     

       (2) a b

m m a b

m

v A z v y exp j t
 

 


     , 

where 
 a b

mv
 

 is the field function of the mth Lamb wave at the mixing frequency 
(2)  

with wave number (2)

mk , and ( )mA z  is the corresponding expansion coefficient. Similar to 
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 the analysis of second-harmonic generation by the primary Lamb wave, the equation 

governin ( )mA z  is given by 

   ,

(2) (2 (

( ) ,( )

) 2)4 ,mm m m s m b m a b

d
Y jk A z y y exp j k k z

dz

 
        

 
 

where 

       (2)

,( )
a b

h a b

b m a b m
h

y j v x y dy
 

 
 



   
   

(

( )(2) (

,( ) )

) .( )[ ( )] |a b a b h

s m a b m x hy j v x y n
    

    

are the excitation functions due to the bulk driving force ( )a by  . 

 The quantity mmY  is the average power flow per unit width along the ox axis for the mth 

Lamb wave at the mixing frequency (2)

a b    . The formal expression of mmY  is 

 

       
       

1

2

a b

a b

h x m m xz

mm a b
h

z m m zz

n v x T x
Y Re j dy

n v x T x

 

 
 





 
       
 

 , 

where ( ) ( )( ) , ( )m xz x m z m zz z m zT n T n T nx T nx   , mT  is the stress tensor related to 
 

( )a b

mv x
 

. 

 Fixed coefficient ( )mA z  can be formally expressed as 

 
(

( ) ( ) 2

2) (2)
(

,(
)

4
)

s m b m m
m m m

mm m

y y sin z
A exp j k z

Y
z

       
 

 

where 

  (2)

2

a b m

m

k k k    . 

 Next, we analyzed the effect of synchronism (also called phase matching between the 

primary wave and the mth combined harmonic mode at the frequency (2)

a b    . The 

magnitude of the mth combined harmonic mode is closely related to m . Thus, the effect of 

synchronism on the generation of the mth combined harmonic mode can be revealed directly 

by the dependence of ( )mA z  on the factor  ( ) /m msin z  . For the synchronism condition 

[i.e., 2  m a bk k k  ] at (2)

a b    , the factor ( ) /m m zsin z   , and the magnitude of the 

mth combined harmonic mode increases linearly with  z  provided 
(2) (2)

( ) ( ) 0s m b my y  . For 

2  m a bk k k    and 
(2) (2)

( ) ( ) 0s m b my y  , the magnitude of sin( )( )m mA zz     remains bounded 

and oscillates with a spatial periodicity  , where   is generally expressed as / m  . 

 We now focus on the analysis of third-order combined harmonics at the mixing 

frequencies (3) 2 a b     and 2a b  . Thus, we neglect the third-order terms of the self 

interactions of two primary waves. To analyze the generation of the third-order combined 

harmonics, the expression for nonlinear terms can, respectively, be simplified as 

    

    

(3) (2 )

( 2 )

2 2

2 2 ,

a

a b

a

a b b

a

b

b a b

Y y exp j k k z t

y exp j k k z t

 

 





      

     

 

and 
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(3) (2 ) [(2 ) (2 ) ]a b

x x a b a bS n s n expj k k z t      

    ( 2 ) 2 2x a b

a b

b as n exp j k k z t        . 

 Referring to the process of analyzing second-order combined harmonics, the total fields 

of third-order combined harmonics generated by (2 ) (2 ) ( 2 ), ,a b a b a b

xy s n y    and ( 2 )a b

xs n    can 

also be written as a linear combination of a series of Lamb waves at the mixing frequencies 
(3) 2 a b     and 2a b   

(2 ) ( 2 )(3) a b a bv v v
    

  , 

   (2 ) (2 )
( ) (2 )a b a b

p p a b

p

v z v exp j tx
      

   , 

(2 )
( )a b

pv x
   ( 2 ) ( 2 )

(( ) ( ) 2 )a b a b

q a b

q q

v v exp j tz x
      

   , 

where 
(2 )

( )a b

pv x
 

 and 
( 2 )a b

qv
 

 are the field functions of the pth and qth Lamb wave at the 

mixing frequencies 2 a b   and 2a b  , respectively, and ( )p z   and ( )q z  the 

corresponding expansion coefficients. 

 The analysis of the second-order combined harmonics leads to the  equations governing  

( )p z  and ( )q z  can be given by 

 ,

(3) (3

( ) ( )

) (3)

,4 ( 2)pp p p s p b p a b

d
Y jk y y exp j k kz z

dz


 
        

 
, 

and 

 ,

(3) (3

( ) ( )

) (3)

,4 ( 2)qq p p s p b p a b

d
Y jk y y exp j k kz z

dz


 
        

 
, 

where 
(3)

pk  and 
(3 )

pk 
 are, respectively, the wavenumbers of the Lamb waves at the mixing 

frequencies 2 a b   and 2a b   and ppY   and qqY   are the corresponding average power 

flow per unit width along the ox axis, whose formal expressions are, respectively, 

 

       
       

2

2

1
2

2

a b

a b

h x p p xz

pp a b
h

z p p zz

n v x T x
Y Re j dy

n v x T x

 

  
 





 
       
 

 , 

 

       
       

2

2

1
2

2

a b

a b

h x p q xz

qq a b
h

z p q zz

n v x T x
Y Re j dy

n v x T x

 

  
 





 
       
 

 , 

where ( ) ( )r xz x r zT n Tx n , ( ) ( )r zz z r zT n Tx n , ( , )r p q ; rT  is the stress tensor related to  

 2
( )a b

pv x
 

 or 
 2

( )a b

pv x
 

. 

 It is important to note that the third-order combined harmonic modes at the mixing 

frequencies 2 a b   and 2a b   are induced by the third order cross-interaction between 

the two primary Lamb waves av   and bv . Only symmetric second harmonics can be 

generated by the self-interaction of primary Lamb waves with either asymmetry or 

antisymmetry feature. 
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 Numerical analysis showed that, the third-order combined harmonic 
 2 a bv
 

 at the 

frequency 2 a b    has the same symmetry feature as the primary Lamb wave 
bv , while the 

symmetry feature of 
 2a bv
 

 at the frequency 2a b   depends only on that of the primary 

Lamb wave av . Similarly, both the synchronism and symmetry feature should be 

simultaneously considered for predicting the existence of cumulative third-order combined 

harmonics generated by the collinear mixing of two primary Lamb waves. The discovered 

dependencies, both synchronism and symmetry, must be taken into account simultaneously 

to predict the existence of so-called cumulative combined harmonics of the third order. Such 

harmonics are generated by collinear mixing of two primary Lamb waves. 

4 BASIC RESULTS 

Verification of the theoretically discovered dependencies was performed using known 

experimental studies of the frequency mixing responses of two primary Lamb waves in an 

aluminum plate with a thickness of 0,97h mm , a length of  1200L mm  along the 

propagation direction and a width of 1 480h mm  perpendicular to the propagation 

direction.  

 
 

Fig.1. Lamb wave dispersion curves for second-order harmonic mode 
 

At longitudinal and transverse velocities of the plate material (aluminum) set to 6.395 

km/s and 3.240 km/s. The dispersion curves of Lamb wave propagation for determining the 

combined harmonic modes of the second and third order satisfying the synchronism 

condition are demonstrated in Fig. 1 and 2. In particular, two primary Lamb waves, 

including the A1 mode at a frequency of fa = 2.6 MHz and the S0 mode at fb = 1.35 MHz, 

are determined for collinear mixing of wave propagation. 
 

 
Fig.2. Lamb wave dispersion curves for third-order harmonic mode 
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The frequencies and phase velocities of the two selected primary Lamb waves, as well as 

the combined harmonic modes of the second and third orders that satisfy the synchronism 

condition, can be determined using the dispersion curves of Lamb wave propagation shown 

in Fig. 3. 
 

 
 

Fig.3. Phase velocity (p) dispersion curves of Lamb waves 

5 DISCUSSION OF THE RESULTS OF THE STUDY 

The dispersion curves shown in Fig. 1 indicate that the combined second-order 

harmonic mode (i.e., S1 mode) at the sum frequency of 4.0 MHz satisfies the phase-

matching condition (i.e., (2)

a bk k k   at (2)

a bv v v  ). On the other hand, it can be argued 

that there is a clear difference between the wave number of the Lamb wave at (2)

a bv v v   

and the value ( )a bk k , which means that the second-order difference frequency mode does 

not satisfy the phase-matching condition.  

The third-order combined harmonic modes satisfying the synchronism condition are 

shown in Fig. 2. It should be noted that the wave numbers (2), ,ak k k   and  (3)k  at 

, ,a b a bv v v v and 2 a bv v  or ( 2a bv v ) depend on the values of the longitudinal and 

transverse velocities of the plate material. 

The results of the calculation methods indicate that the relative error of the calculated 

values may depend on the longitudinal and transverse velocities of propagation of the Lamb 

wave modes in the plate material. The reaction of mixing the Lamb waves' frequencies at 

frequencies 2 a bv v  and 2a bv v  was detected. It can be considered that it approximately 

satisfies the synchronism criterion for generating third-order combined harmonic modes. 

Obviously, the third-order combined harmonic modes at the frequency 2 a bv v  satisfy the 

synchronism condition better than at the frequency 2a bv v . 

It can be concluded that for the two selected primary Lamb waves, the synchronism of 

the generation of combined harmonic modes of the second and third order is considered 

simultaneously, which means that possible frequency mixing reactions of the second and 

third orders can be observed simultaneously. The frequency mixing reaction of Lamb waves 

is indeed manifested for the selected pair of modes.  

However, it should be noted that although the combined second-order harmonic mode 

(i.e., the S1 mode) at the sum frequency satisfies the synchronism condition, the 

corresponding amplitude is not displayed on the amplitude-frequency curve. The analysis 

showed that in addition to the synchronism condition, the required symmetry condition must 

be simultaneously satisfied for the combined second-order harmonic mode to be generated. 

In particular, the combined second-order harmonic mode generated at the sum frequency 
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must be antisymmetric rather than symmetric due to the cross-talk between the A1 and S0 

modes. Thus, the absence of the appearance of the combined second-order harmonic mode 

should be explained by the fact that the synchronism and symmetry conditions cannot be 

simultaneously achieved. 

6 CONCLUSIONS 

In this paper, the frequency mixing response caused by the collinear cross-talk of two 

primary Lamb waves with different frequencies is theoretically analyzed and compared with 

known experimental results. A theoretical basis for the frequency mixing response caused by 

the collinear mixing of two primary Lamb waves is established using the perturbation 

approximation and the normal mode decomposition method for waveguide excitation. Based 

on the theoretical basis, we discuss the internal resonance conditions for the generation of 

second- and third-order combined harmonics by two primary Lamb waves, and predict the 

existence of second- and third-order combined harmonics at different mixing frequencies.  

To verify the theoretical prediction, the results of the combined harmonics 

measurements of two primary Lamb waves at certain mixing frequencies are used. The 

experimental results show that two conditions must be simultaneously satisfied for the 

combined harmonics to be generated. The first condition is synchronization, and the second 

condition is the symmetry property. In addition, it can be stated that the frequency mixing 

response is due only to the collinear cross-talk between the two primary Lamb waves. 

In addition, the previously predicted cumulative effect of combined harmonics 

generated with the propagation distance in the mixing zone of two primary Lamb waves 

propagating in the sample was found. This effect is consistent with the effect of the 

appearance of combined harmonics at certain mixing frequencies. Thus, this work provides 

a physical understanding of the generation of combined harmonic modes by the collinear 

cross-talk of two primary Lamb waves. 
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