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УДК 531.381 

ЗБУРЕНІ РУХИ ГІРОСТАТА З РУХОМОЮ МАСОЮ В 

СЕРЕДОВИЩІ З ОПОРОМ  

Лещенко Д. Д.1, Козаченко Т. О.1 

1Одеська державна академія будівництва та архітектури 

Анотація: Розвиток досліджень задач динаміки твердого тіла, яке рухається навколо 

нерухомої точки полягає в тому, що тіла не є абсолютно твердими, а близькі до ідеальних 

моделей. Вплив неідеальностей може бути виявленим  на основі методів сингулярних збурень, 

усереднення та інших асимптотичних методів нелінійної механіки. Він зводиться до наявності 

додаткових доданків в динамічних рівняннях Ейлера для фіктивного твердого тіла. 

Припускається,  наприклад, що динамічно симетричне тіло містить сферичну порожнину, 

заповнену  рідиною великої в’язкості (при малих числах Рейнольдса) і в'язкопружний елемент, 

який моделюється рухомою масою, з'єднаною демпфером з корпусом. Ці рухи можуть бути 

зумовлені наявністю рідини в порожнинах в тілі (наприклад, рідке паливо, окислювач в 

резервуарах ракети).  Наявність рухомої маси моделює присутність нежорстко закріплених 

елементів на космічному апараті, що при тривалому періоді часу має суттєвий вплив на його 

рух відносно центра мас. Крім того, на тіло діє малий момент сил опору середовища. 

У статті за допомогою методу усереднення знайдено наближений розв'язок рівнянь  у 

випадку задачі про рух в середовищі з опором динамічно симетричного гіростата з рухомою 

масою. Проведено чисельне інтегрування усередненої системи рівнянь руху тіла. Графічні 

зображення розв'язків представлені та обговорені. Побудовано графіки зміни величин квадратів 

екваторіальної та осьової компонент кутової швидкості. Одержані кількісні та якісні результати 

досліджень руху в середовищі з опором динамічно симетричного твердого тіла з порожниною, 

заповненою вязкою рідиною, та з рухомою масою. Досліджено еволюцію збуреного руху 

Ейлера-Пуансо під впливом малих внутрішніх і зовнішніх моментів. Перевага цієї роботи 

полягає в отриманні оригінальних асимптотичних розв’язків та чисельних розрахунків, які 

описують еволюцію руху даної механічної системи. Робота може розглядатися як розвиток 

попередніх задач про рух твердого тіла під дією малих моментів окремо (порожнини 

заповненою рідиною великої в’язкості, середовища з опором, рухомої маси). Стаття вносить 

вклад в вивчення задач руху штучних супутників і рухів членів екіпажу відносно цих тіл, рухів 

обертових снарядів з масою. 

Ключові слова: тверде тіло, середовище з опором, рухома маса, в’язка рідина. 

PERTURBED MOTIONS OF A GYROSTAT WITH A MOVABLE 

MASS IN A RESISTIVE MEDIUM 

D. Leshchenko1, T. Kozachenko1  
1Odessa State Academy of Civil Engineering and Architecture 

Abstract: Investigation of the dynamics of a rigid body moving about a fixed point implies that 

the bodies are not absolutely rigid but are close to ideal models. The effect of nonidealities can be 

analyzed by singular perturbation methods, averaging, or other asymptotic methods of nonlinear 

mechanics. It is reduced to the presence of additional terms in Euler’s dynamics equations for a 

fictitious rigid body. 

It is assumed that, for example, the dynamically symmetric body contains a spherical cavity filled 

with a highly viscous fluid (at small Reynolds numbers) and a viscoelastic element that is modeled by 

a moving mass connected to the body by a strong damper. These motions may have various case: for 

example, the presence of fluid in the cavities in the body (e.g., liquid fuel or oxidizer in the tanks of 
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rocket). The moving mass models loosely attached elements in a space vehicle, which can 

significantly affect the vehicle’s motion relative to its center of mass during a long period of time. In 

addition, the body affected by a small medium resistance torque. 

The paper develops an approximate solution by means of an averaging method for the perturbed 

motion of this rigid body. The numerical integration of the averaged system of equations is conducted 

for the body motion. The graphical presentations of the solutions are represented and discussed. The 

graphs of changes in the squared values of the equatorial and axial components of the angular velocity 

are constructed. The quantitative and qualitative results of the study of motion in a medium with 

resistance of a dynamically symmetric solid with a cavity filled with a viscous liquid and a moving 

mass are obtained. Evolution of perturbed Euler-Poinsot motion under the influence of small internal 

and external torques is studied. The advantage of this work is in receiving the original asymptotic and 

numerical calculations, as well as solutions that describe the evolution in of a rigid body with cavity, 

filled with a viscous fluid and with a moving mass. The paper can be considered as mainstreaming of 

previous works for the problem of rigid body motion under the action of small torques (cavity filled 

with a fluid of high viscosity, moving mass, resistive medium). Results summed up in this paper make 

it possible to analyze motions of artificial satellites, of spinning projectiles with mass and the activities 

of crew members about a vehicle. 

Keywords: rigid body, resistive medium, movable mass, cavity, viscous fluid. 
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1 ВСТУП 

Космічний корабель або супутник в своєму русі відносно центра мас зазнає вплив 

моментів сил різної фізичної природи. Це, наприклад, моменти, викликані рухом 

внутрішніх мас, які можуть виникати через такі фактори, як наявність обертових 

компонентів (роторів, гіроскопів), а також переміщеннями екіпажу в випадку 

пілотованого апарату. 

2 АНАЛІЗ ЛІТЕРАТУРНИХ ДАНИХ ТА ПОСТАНОВКА ПРОБЛЕМИ 

Проблеми динаміки тіл з порожнинами, що містять рідину, відносяться до 

класичних задач механіки [1, 2]. В статті [1] досліджується сумісний вплив рідини 

великої в’язкості в порожнині твердого тіла і рухомої маси, з’єднаної з тілом пружним 

зв’язком з в’язким тертям або з квадратичною дисипацією, на рух динамічно 

симетричного тіла. В статті [2] вивчається рух в середовищі з опором близького до 

динамічно сферичного твердого тіла з порожниною, заповненою в’язкою рідиною при 

малих числах  Рейнольдса. 

В статті [3] розглядається можливість демпфування нутаційних коливань за 

допомогою в’язкої рідини, яка заповнює порожнини в роторі або в рамках гіроскопа. В 

[4] показана можливість стабілізації нестійкого рівномірного обертання в середовищі з 

опором «сплячого» гіроскопа Лагранжа з ідеальною рідиною за допомогою другого 

обертового гіроскопа та пружних сферичних шарнірів. 

Велика кількість робіт присвячена дослідженню обертання твердого тіла з 

рухомими внутрішніми масами [1, 5-11]. Огляд робіт з цієї тематики представлений в 

[5, 8-11]. В книзі [6] вивчається вплив внутрішньої пружності та дисипації на рух 

супутника відносно центра мас. В статті [8] за допомогою методу усереднення 

отримано наближене розв’язання задачі про рух в середовищі з опором близького до 

динамічно сферичного твердого тіла з в’язкопружним елементом. В роботі [9] 

досліджується задача про рух в середовищі з опором динамічно симетричного твердого 

тіла з рухомою масою, яка з’єднана з тілом пружною в’яззю при наявності в’язкого  

тертя. В [10] за допомогою метода усереднення одержується наближене розв’язання 

задачі про рух динамічно симетричного твердого тіла з в’язкопружним елементом під 

дією постійного моменту в зв’язаних осях. В статті [11] проведене асимптотичне 

розв’язування системи рівнянь Ейлера з додатковими збурюючими моментами сил для 

близького до динамічно сферичного твердого тіла з в’язкопружним елементом під дією 

сталого моменту в зв’язаних з тілом осях. 

Важливою областю застосування динаміки твердого тіла є механіка гіроскопічних 

систем. Ряд випадків інтегрування рівнянь руху твердого тіла в середовищі з опором 

розглянуто в [12-15]. У статті [16] розглядається збурений рух космічного апарата, що 

обертається, на круговій орбіті під дією малого аеродинамічного моменту, 

пропорційного кутовій швидкості тіла. В  [17] одержані умови асимптотичної стійкості 

рівномірного обертання несиметричного твердого тіла у середовищі з опором. 

 Розглянемо просторовий рух динамічно симетричного тіла, що містить сферичну 

порожнину, заповнену рідиною великої в'язкості. Рух відбувається відносно центра 

інерції. До точки на осі симетрії тіла (у її недеформованому стані) прикріплена рухома 

точкова маса, яка з’єднана в’язкопружним демпфером з корпусом [1]. Окрім того, на 

тіло діє момент сил опору середовища, який пропорційний кутовому моменту тіла із 

«замерзлою» рідиною [2, 8, 13, 15] 

В даному випадку наближена система рівнянь збуреного руху в проекціях на 

головні центральні осі інерції має вигляд [1, 2] (крапка позначає похідну за часом t ): 
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де , ,p q r  – проекції вектора абсолютної кутової швидкості    на зв'язані осі, A  і C  

головні центральні моменти інерції системи,   – додатний коефіцієнт пропорційності, 

який залежить від фізичних характеристик середовища та форми тіла,  – густина 

рідини, 0P   скалярна величина, яка для сферичної порожнини радіуса b  визначається 

за формулою 78 / 525P b  [1, 2]. Перші доданки в правих частинах рівнянь (1) 

відображають момент сил в’язкої рідини у порожнині тіла в межах асимптотичного 

наближення. При цьому передбачається, що число Рейнольдса мале: Re 1  [1],   – 

кінематичний коефіцієнт в’язкості рідини 1/ Re 1   і 1 1  . Будемо вважати, що 

безрозмірний параметр 1 ~  . 

 Коефіцієнти ,L S , що входять у рівняння (2) задаються через параметри системи 

за формулами:  

 2 2 3 2 2 2 2 2

2 4 3 4

( ) ,

( )

F m A C A p q C r

D m C A C A





 

 

   

  
            (2) 

Коефіцієнти ,F D  характеризують вплив збурюючих моментів сил, які обумовлені 

наявністю в’язкопружного елемента. Позначимо, m  як масу рухомої точки, а   – відстань від 

центра мас недеформованої системи до місця її кріплення, яке,  згідно з припущенням, 

розташоване на осі динамічної симетрії тіла. Константи 
2 ,c m  m   визначають 

частоту коливань та інтенсивність їх згасання відповідно;  параметр c  характеризує жорсткість 

(тобто коефіцієнт пружності), тоді як   є коефіцієнтом в’язкого тертя в демпфері. 

3 ЦІЛЬ ТА ЗАДАЧІ ДОСЛІДЖЕННЯ 

Досліджується випадок демпфера, коли коефіцієнти ,   задовольняють 

нерівностям [1, 8]: 

2 2                     (3) 

Умова (3) дозволяє ввести малий параметр в (3) і вважати вказані збурюючі 

моменти малими. Це створює можливість застосування асимптотичного метода 

усереднення [18]. Крім того, виконання нерівності (3) дає підстави нехтувати вільними 

коливаннями точкової маси, які обумовлені початковими відхиленнями, внаслідок їх 

швидкого згасання. Натомість основна увага приділяється вимушеним 

квазістаціонарним рухам, які спричинені обертанням тіла. 

Припустимо, що 
2 4, ~   . 

У випадку, коли 
2 40, 0, 0       

1 0   , система (1) інтегрується, при 

цьому 0r r . 

Якщо 0 0r  , то в цьому випадку змінні ,p q  здійснюють гармонійні коливання, 

частота яких 0( )C A r  залежить від 0r  та система рівнянь (1) є нелінійною. 

Загальний породжувальний розв’язок системи (1) має вигляд [19]: 
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0cos , sin ,p a q a r r                  (4) 

Застосуємо його як перетворення до змінних ,a r , де 

0, const,a a 
1= ( )r C A A t  .  

В результаті одержимо, що cos sina p q   . Підставимо в цей вираз p  і q  з 

перших двох рівнянь (1). Далі проводимо процедуру усереднення одержаного рівняння 

для a  за фазою   [18] і, враховуючи, що 2 2 2a p q   запишемо рівняння (1) для r  у 

вигляді: 

2 2 3 5 4

3

2 2 3 3 2
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( ) ( ) .
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        (5) 

Здійснюючи заміну змінних 2 2,x a y r   систему (5) приведемо до наступного 

вигляду: 

2 5 3 2

3

2 3

2 ( ) ( ) ,

2 ( ) ( ) .

dx P
x C A C y m A C A C y

d A

Pdy
y A C x m A C A C xy
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В цій системі ,x y  – повільні змінні ( t  ). 

4 РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ 

Система (6) проінтегрована чисельно за початкових умов (0) 1, (0) 1x y   та 

параметрів 01; 1; 0.1; 0.48; 1260; 1;m P C         1.2, 1.5, 2.0, 2.5;A   

0.1, 0.5  . Розв’язок системи отримано в математичному пакеті Maple із 

використанням методу Рунге-Кутти-Фельберга п’ятого порядку точності.  

На рис. 1 – 3 наведено графічне представлення величин квадратів 

екваторіальної 2x a  та осьової компонент 
2y r  кутової швидкості твердого тіла у 

випадках: 1.2, 1.5, 2.0, 2.5A   і 0.1   (рис. 1, 3), та 1.2, 1.5, 2.0, 2.5A   і 

0.5  (рис. 2), при незмінних інших параметрах. 

 
 

Рис. 1. Графіки змінної x  у випадку 0.1    
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Рис. 2. Графіки змінної x у випадку 0.5   

 

 

Рис. 3. Графік змінної y  в випадку 0.1    

5 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ 

Як бачимо з рис. 1 ‒ 3 змінні 2x a  та 2y r  спадають асимптотично 

наближаючись до нуля. У випадку виконання співвідношення ~ 1,A C A C  

спостерігається стрімке зростання величини x  на достатньо малому часовому 

інтервалі. Однак при більших значеннях А  темп зростання 2x a знижується і близьке 

до випадку A C  (сфери). Змінна у  прагне до нуля на дуже малому проміжку часу 

[0; 0.02] . 

Також характер спадання величин квадратів екваторіальної та осьової компонент 

кутової швидкості твердого тіла залежить від властивостей середовища та форми тіла. 

При зростанні величини   (при однакових інших параметрах) спадання змінних 2x a  

та 
2y r  відбувається швидше. 
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6 ВИСНОВКИ 

В результаті дослідження в середовищі з опором руху твердого тіла зі сферичною 

порожниною, заповненою рідиною високої в'язкості, та з рухомою масою, зв’язаною з 

тілом пружною в’яззю при наявності в’язкого тертя одержано систему рівнянь руху в 

стандартній формі. Після переходу до усередненої системи знайдено чисельний 

розв’язок задачі. Еволюція руху твердого тіла описується розв’язками, які можуть бути 

використаними, при дослідженні орієнтації та стабілізації руху супутника відносно 

центра мас і рухів членів екіпажів відносно цих тіл. 
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