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УДК 514 

ТРИВИМIРНI ЗВIДНI ПСЕВДОРIМАНОВI ПРОСТОРИ 

Лесечко О. В.1, Соловйов А. А.2 
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Анотація: У роботі досліджено спеціальні класи псевдоріманових просторів та 

взаємозв’язки між ними. 

Розглянуто клас звідних псевдоріманових просторів. Встановлено характерні тотожності 

для цих просторів і доведено, що тензор другої валентності, який отримано з тензорної ознаки 

звідних просторів, комутує з тензором Річчі цього простору. У випадку, якщо звідний простір є 

тривимірним показано, що цей тензор можна виразити як лінійну комбінацію метричного 

тензора та тензора Річчі, а його згортка з тензором Річчі може бути подана через сам цей тензор 

із певним коефіцієнтом. Крім того, для тривимірних звідних псевдоріманових просторів 

отримано явне представлення тензора Річчі через його згортку із самим собою та метричним 

тензором, з коефіцієнтом, який містить скалярну кривину. 

Досліджено внутрішню геометрію двох можливих типів тривимірних звідних просторів. 

Перший тип це псевдоріманів простір, у якому матриця метричного тензора має блочно-

діагональну структуру, у якій перша компонента залежить лише від першої координати, а інші 

компоненти з блоку рангу два залежать від другої та третьої координат. Аналогічно досліджено 

другий тип, також з блочно-діагональною структурою матриці метричного тензора, проте тут 

кожна компонента першого блоку рангу два залежать від першої та другої координат, тоді як 

остання компонента матриці метричного тензора залежить лише від третьої координати. Для 

загальної матриці метричного тензору для цих двох типів, а також для кожного з цих типів 

окремо отримано явні значення тензора другої валентності, який отримано з тензорної ознаки 

звідних просторів. 

Центральним результатом дослідження є теорема, яка стверджує, що тривимірні звідні 

псевдоріманові простори за необхідністю є рекурентними і, як наслідок, Річчі-рекурентними. 

Отримані результати можуть бути корисними для подальших досліджень у 

диференціальній геометрії, загальній теорії відносності та теоретичній механіці при 

моделюванні фізичних процесів. 

Ключові слова: псевдоріманові простори; тривимірні простори; звідні простори; 

рекурентні простори; Річчі-рекурентні простори. 

THREE-DIMENSIONAL REDUCIBLE PSEUDO-RIEMANNIAN  

SPACES 

Lesechko O. V. 1, Soloviov А. А.2 

1Odesa State Academy of Civil Engineering and Architecture 

2Odesa I. I. Mechnikov National University 

Abstract: The paper investigates certain classes of pseudo-Riemannian spaces and the 

relationships between them. 

The class of reducible pseudo-Riemannian spaces is considered. Characteristic identities for these 

spaces are established, and it is proven that the tensor of the second valence, derived from the tensor 

criterion of reducible spaces, commutes with the Ricci tensor of the space. In the case where the 

reducible space is three-dimensional, it is shown that this tensor can be expressed as a linear 

combination of the metric tensor and the Ricci tensor, and its contraction with the Ricci tensor can be 

represented in terms of itself with a certain coefficient. Furthermore, for three-dimensional reducible 

pseudo-Riemannian spaces, an explicit representation of the Ricci tensor is obtained through its 

contraction with itself and the metric tensor, with a coefficient that involves the scalar curvature. 
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The intrinsic geometry of two possible types of three-dimensional reducible spaces is examined. 

The first type is a pseudo-Riemannian space in which the metric tensor matrix has a block-diagonal 

structure, where the first component depends only on the first coordinate, while the remaining 

components in the rank-two block depend on the second and third coordinates. Similarly, the second 

type is studied, also featuring a block-diagonal structure of the metric tensor matrix; however, in this 

case, each component of the first rank-two block depends on the first and second coordinates, whereas 

the last component of the metric tensor matrix depends only on the third coordinate. Explicit values of 

the second-order tensor, derived from the tensor criterion of reducible spaces, are obtained for the 

general metric tensor matrix of these two types, as well as for each type separately. 

The central result of the study is a theorem stating that three-dimensional reducible pseudo-

Riemannian spaces are necessarily recurrent and, consequently, Ricci-recurrent. 

The obtained results may be useful for further research in differential geometry, general 

relativity, and theoretical mechanics in the modeling of physical processes. 

Keywords: pseudo-Riemannian spaces; three-dimensional spaces; reducible spaces; recurrent 

spaces; Ricci-recurrent spaces. 
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1 ВСТУП 

Нехай nV  − псевдорімановий простір з метричним тензором , 2i jg n  . Рімановий 

простір nV  називається (локально) звідним, якщо в деякому околі D кожної його точки 

M може бути вибрана така система координат 1 2, , ..., ny y y , відносно якої основна 

метрична форма має вигляд [1-3]: 

    , , , 1, ..., , , , 1, ..., .c a b

abI g x dx dx g x dx dx a b c k k n  

         

Тут abg  передбачаються залежними тільки від 1 2, , ..., kx x x , а g   – тільки від 

1 2, , ...,k k nx x x  . Тим самим звідний рімановий простір nV  згідно означенню 

представляє собою добуток ріманового простору mV  (віднесеного до координат 

1 2, , ..., kx x x ) з основною метричною формою  c a b

abg x dx dx  на рімановий простір n mV   

(віднесеного до координат 1 2, , ...,k k nx x x  ) з метричною формою  g x dx dx  

  . 

Таким чином матриця метричного тензору має вид [1, 4-6] 

   

   

   

   
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0 . . . 0 . . .
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k k k

i j

k k k n

n k nn

g X g X

g X g X
g

g Y g Y

g Y g Y

  



 
 
 
 
 

  
 
 
 
 
 

, 

де 1 2, , ..., kX x x x ,  1 2, , ...,k k nY x x x  . 

Тензорною ознакою звідності псевдоріманового простору є існування в ньому двічі 

коваріантного симетричного коваріантно сталого ідемпотентного тензора ija , який не 

пропорційний метричному тензору [7, 8]: 

, 0i j k

i j i j

i j j i

i j i j

a

a a a

a a

a c g
















 

 (1) 

(2) 

Тут "," − знак коваріантної похідної у просторі nV , обчисленою за формулою 

,i j k k i j j ik i j ka a a Г a Г 

      , 

i j

k i j k

a
a

x


 


 , 

1

n

j i k j i ka Г a Г 

 


  , 

де за допомогою метричного тензора формулами 
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,

h h

i j i jГ g Г   

,

1

2

i j j k k i

i j k k i j

g g g
Г

x x x

   
    

   
 

визначаються символи Крістофеля другого роду, що є об’єктами афінної зв’язності Г на 

nV  (її називають рімановою зв’язністю), а i jg  − елементи оберненої матриці 

метричного тензору i jg . Ці формули також виконуються у дослідженнях [1, 6, 9 - 12] 

при відображеннях спеціальних типів просторів. 

Умова інтегрування рівняння (1) з урахуванням тотожності Річчі має вигляд 

0,i j k l j i k la R a R 

                 (3) 

де 
h

i j kR  − тензор Рімана, який визначається наступною формулою: 

h h

i j i kh h h

i j k i k ji j k k j

Г Г
R Г Г Г Г

x x

 

 

 
    

 
 

та задовольняє умовам: 

0h h

ik ji j k
R R   

)(
0h

i j k
R 

                  (4) 

( , ) 0h

i j k lR   

Тензор типу 
0

4

 
  
 

  

h i j k h i j k
R g R

   

називається тензором кривини nV . Цей тензор було розглянуто у [4], окрім умов на 

тензор Рімана, він також задовольняє співвідношенням: 

0h i j k i h j kR R   

0h i j k h ik jR R   

0h i j k j k h iR R   

Тензор типу 
0

2

 
 
 
 

 i j i jR R

  називається тензором Річчі простору nV  Він за 

необхідністю симетричний: i j j iR R , а його слід: R R g

 називається скалярною 

кривиною простору nV . Дослідження з використанням цього об’єкту велись у [13-15]. 

2 АНАЛІЗ ЛІТЕРАТУРНИХ ДАНИХ ТА ПОСТАНОВКА ПРОБЛЕМИ 

Спеціалізація псевдоріманових просторів, як засіб введення додаткових обмежень, 

має два основних джерела. Перше, це накладання геометричних умов на об’єкт, що 

вивчається, використання геометричних особливостей в дослідженні. Друге, це 

технологічні можливості, які виникають при використанні розроблених методів 

дослідження. Враховуючи обидві особливості, запропоновані методи спеціалізації 

псевдоріманових просторів по типу внутрішніх об’єктів. Зокрема, безпосередньо по 

виду метричного тензора. 
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Серед псевдоріманових просторів, що допускають спеціальний вид метрики в 

деякій системі координат, виділені звідні та напівзвідні простори. Вивчаються їх 

тензорні ознаки та, спираючись на це, деякі їх геометричні властивості. 

Простори малої розмірності мають свої особливості як в методах дослідження, так і 

в отриманих результатах. Технічні труднощі, що виникають в процесі вивчення таких 

просторів, мають специфічний характер, а методи їх подолання лежать в основі 

досліджень просторів більшої розмірності. 

В останні роки саме тривимірні простори стали об’єктом заснування нових методів. 

Тому вивчення тривимірних звідних просторів є актуальною темою дослідження. 

Робота ведеться локально, тензорними методами. 

3 ЦІЛЬ ТА ЗАДАЧІ ДОСЛІДЖЕННЯ 

Спеціалізація псевдоріманових просторів є одним із ефективних методів 

дослідження в диференціальній геометрії. В нашому випадку, це можливість 

приведення метричного тензора псевдоріманового простору до спеціального виду в 

деякій системі координат. Такі псевдоріманові простори називаються майже звідними 

просторами. Майже звідними просторами є широкі класи псевдоріманових просторів із 

загальної теорії відносності, теорії геодезичних відображень, теорії квазі відображень 

та теорії конформних відображень, а також інших розділів диференціальної геометрії та 

топології. 

4 РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ 

З урахуванням (4) проциклювавши рівняння (3) по індексах , ,i k l  отримаємо 

0.i k j l i lj k l j i k
a R a R a R  

                    (5) 

Домножимо рівняння (5) на jkg  та згорнемо по індексах ,j k   

0.i ll i
a R a R 

      

Двічі коваріантні тензори, які задовольняють співвідношенню 

1 1

1 1

... ...

... ... .n n

m m

k k k k

i jl l j il la A a A
 

    

називають комутуючими з тензором 1

1

...

...
n

m

k k k

il lA . Такого типу співвідношення було 

розглянуто у [16]. Таким чином, має місце 

Теорема 1. В звідних псевдоріманових просторах тензор i ja  комутує з тензором 

Річчі i jR . 

У [17] було доведено, що у тривимірних псевдоріманових просторах тензор 

кривини записується у вигляді 

.i j k l il jk ik jl jk il jl ikR P g P g P g P g                 (6) 

Домножимо це рівняння на jkg  та згорнемо по індексах ,j k : 

,il il ilR P Pg                   (7) 

тут .P P g 

   

Далі, рівняння (7) домножимо на i lg  та згорнемо по індексах ,i l  - 
4

R
P   
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і підставимо отримане значення P  у співвідношення (7)  

.
4

il i l il

R
P R g   

Отриманий вираз для 
ilP підставимо у (6) 

 
2

i j k l il jk ik jl jk il jl ik il jk ik jl

R
R R g R g R g R g g g g g              (8) 

а цей, далі, підставимо в умову інтегрування тензору i ja , відображене у (3) 

 

 

2

0.
2

i l jk k jl l j k k j l l jk k jl

j l ik k il l ik k il l ik k il

R
a R g R g R R g g

R
a R g R g R R g g

     



     



   

   

 
       

 

 
        

 

        (9) 

Проальтернуємо отриману рівність по індексах ,j l : 

2 2

0
2 2

i l jk i j lk l i jk j i l k l i jk j i l k

j k il l k ij k j il k l ij kj il kl ij

R R
a R g a R g a R a R a g a g

R R
a R g a R g a R a R a g a g

 

 

 

 

      

       

 

перепозначимо індекси i та l  

2 2

0
2 2

l jk l ik il jk j l i k il jk j l i ki j

j k li i k l j k j l i k i l j k j l i k i l j

R R
a R g a R g a R a R a g a g

R R
a R g a R g a R a R a g a g

 

 

 

 

      

       

 

та додамо до (9) 

2 2 2 2 0.l i jk j l i il jk k j l i il jk k j l ik
a R g a R g a R a R R a g R a g 

         

Отриману рівність домножимо на j kg  та згорнемо по індексах ,j k   

2 2 2 2 3 0l i il il l i il l ina R a R g a R aR Ra Rag 

             (10) 

і далі, домножимо на l

ka  з урахуванням ідемпотентності (2), згорнемо по індексу l та 

підставимо індекс k на l : 

6 2 2 2 3 0l i il il l i il ila R a R a Ra aa R Ra Raa  

         

або 

 
 

1
2 .

2 3
l i ila R a a R R R a

a

 

   


 

Тобто згортка 
l ia R

   виражається через i la  з коефіцієнтом. Врахуємо це у (10): 

 
 

 2 3
3 .

32 3
i l il il

a R R a a a
a g a R

a R R aa R R a








 
  


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Таким чином, доведена 

Теорема 2. Тензор i la , отриманий із тензорної ознаки звідності тривимірних 

псевдоріманових просторів, має вигляд: 

,i l i l i la u g v R                 (11) 

де 

 
 

 

2
3 ,

2 3

3 .
3

a R R a
u a

a R R a

a
v a

a R R a














 



 


 

Зауважимо, що якщо 0v  , то i l i la ug , що суперечить означенню i la . Таким 

чином, 0v   

У тотожність (3) підставимо (11) 

  0.j i k l i j k lv R R R R 

     

З огляду на те, що 0v  , отримуємо 

j ik l i jk lR R R R 

                  (12) 

Вираз (8) домножимо на img , згорнемо по індексу i  та підставимо замість індексу 

m  індекс i  

 .
2

i i i i i i i

j k l l j k k j l j k l j l k l j k k j l

R
R R g R g R R g g g          

Отриманий вираз для тензора Рімана підставимо у (12) 

 

 

2

2

j l i k k i l ik l il k l i k k i l

i l j k k j l j k l j l k l j k k j l

R
R R g R g R R g g g

R
R R g R g R R g g g

     



     



   

   

 
      

 

 
       

 

 

або 

 .
2

j l i k j k i l i l j k i k j l i l j k i k j l j l i k j k i l

R
R R g R R g R R g R R g R g R g R g R g   

           

Цю рівність домножимо на i kg , згорнемо по індексах ,i k  

 3 3 ,
2

j l j l j l j l

R
R R R R g R g g R  

       

або 

  21
3 2 .

6
j l j l j lR R R R g R R R 

              (13) 

Таким чином, доведено  

Наслідок 1. Тензор Річчі у звідних тривимірних псевдоріманових просторах 

задовольняє умовам (13). 
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При розгляданні (11) врахуємо ідемпотентність i la  

   ,i i l l i l i lug vR u vR ug vR 

       

тобто 

   2 21 2 .i l i l i lg u u R v u v R R

     

У отриману рівність підставимо вираз (13)  

      2 21
1 1 2 3 2 ,

6
i l i l i l i lg u u R v u v R R g R R R



 
      

 
 

або, зводячи подібні, 

 
2

2 21 2 2 .
2 6

i l i l

v R v
R v u g u u R R R



  
       

   
 

Отримуємо, що тензор Річчі виражається через метричний тензор із деяким 

коефіцієнтом, що є характерним для просторів Ейнштейна, у яких кривина є сталою. 

Однак у просторах, розглянутих у цій роботі, це загалом не виконується. Таким чином, 

отримана тотожність справедлива лише у випадку, коли коефіцієнт при метричному 

тензорі та коефіцієнт при тензорі Річчі одночасно дорівнюють нулю. Враховуючи, що 

0v  , отримуємо 

 

 
2

2 2

1 2 0
2

2 0
6

v R
u

v
u u R R R




  





   


 

(14) 

 

 

     (15) 

Рівність (11) продиференціюємо коваріантно за напрямком mx  з урахуванням 

коваріантної сталості тензору i la  

, , , 0m il m il il mu g v R vR                (16) 

та домножимо на i lg , згорнемо по індексах ,i l  

, , ,3 m m mu v R v R                 (17) 

З іншого боку, продиференціюємо коваріантно за напрямком mx  рівність (15)  

, , ,4 m m mu v R v R                 (18) 

Віднімемо (18) від (17) і отримаємо  

, 0.mu                   (19) 

Рівність (17) у зв’язку з (19) набуває вигляду 

, , 0.m mv R v R                 (20) 

З огляду на те, що v та R − інваріанти, їх коваріантна похідна є звичайною 

похідною, і тому ми отримали звичайне диференціальне рівняння першого порядку зі 

змінними, що відокремлюються. Інтегруючи частини рівності (20) отримуємо 
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0, ln ln ln ,
v R

v R C
v R

 
       

або 

0 .
C

v
R

                  (21) 

Врахуємо (19) у (16)  

,
,

m

il m il

v
R R

v
                 (22) 

та у (17)  

,
, .

m

m

v
R R

v
                 (23) 

Підставляючи (23) у (22), отримуємо, що 

,
, .

m

il m il

R
R R

R
                (24) 

У [18] було визначено Річчі-рекурентні простори. Псевдорімановий простір 
nV  

називається Річчі-рекурентним, якщо в ньому існує ненульовий вектор 
i , для якого 

виконується умова , .i j k k i jR R  

Таким чином, доведена  

Теорема 3. Тривимірні звідні псевдоріманові простори за необхідністю Річчі-

рекурентні. 

Псевдорімановий простір 
nV  називається рекурентним, якщо в ньому існує 

ненульовий вектор 
i , для якого виконується умова , .hi jk m m hi j kR R  

Рівність (8) продиференціюємо коваріантно за напрямком mx  

 ,
, , , , , .

2

m

i jk l m il m j k ik m jl j k m il j l m ik il j k i k j l

R
R R g R g R g R g g g g g       

Враховуючи (23) та (24) послідовно отримуємо  

 , , , , ,
, .

2

m m m m m

i jk l m il j k ik j l j k i l j l i k i l j k i k j l

R R R R R R
R R g R g R g R g g g g g

R R R R R
       

 ,
,

2

m

i jk l m il j k ik jl j k il j l i k il j k i k j l

R R
R R g R g R g R g g g g g

R

 
      

 
 

,
, .

m

i jk l m i j k l

R
R R

R
  

Таким чином, доведено  

Наслідок 2. Тривимірні звідні псевдоріманові простори за необхідністю 

рекурентні. 

Рівність (19) говорить про те, що інваріант u − це деяка константа, враховуючи (21) 

у (14) отимуємо явний вираз цієї константи 

02
.

4

C
u


                 (25) 
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Підставляючи (25) та (21) у (15) отримуємо, що друга згортка тензору Річчі з самим 

собою R R


 виражається через квадрат скалярної кривини з деяким коефіцієнтом 

 2 2

0 02 1
1 2

0

2 3 1
, .

2 2

def C CC
R R R C

C





 
   

Таким чином, рівність (13) набуває вигляду 

  13 1 .
6

j l j l j l

R
R R R g R C

     

4 ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ 

Тривимірні звідні псевдоріманові простори існують двох типів в залежності від 

структури метричного тензору. Назвемо 
3V  тривимірним звідним псевдорімановим 

простором І типу, якщо його метричний тензор має наступний вид: 

 

   

   

1

11

2 3 2 3

22 23

2 3 2 3

32 33

0 0

0 , ,

0 , ,

ij

g x

g g x x g x x

g x x g x x

 
 
 
 
 
 
 

 

і ІІ типу, якщо метричний тензор 
3V  наступного виду 

   

   

 

1 2 1 2

11 12

1 2 1 2

21 22

3

33

, , 0

, , 0

0 0

ij

g x x g x x

g g x x g x x

g x

 
 
 
 
 
 
 

 

відповідно. 

Розглянемо вираз (6) як систему лінійних алгебраїчних рівнянь з невідомими i jP  

одразу для двох вказаних типів, тобто враховуючи, що лише компоненти 13 31,g g  

матриці метричного тензору дорівнюють нулю: 

   

     

   

1 2 3 1 2

11 12

1 2 1 2 3 2 3

21 22 23

2 3 1 2 3

32 33

, , , 0

, , , ,

0 , , ,

ij

g x x x g x x

g g x x g x x x g x x

g x x g x x x

 
 
 
 
 
 
 

 

З урахуванням властивостей тензора Рімана, отримуємо систему з 6 рівнянь: 
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1212 12 12 11 22 22 11

1213 13 12 11 23 23 11

1223 13 22 12 23 23 12

1313 11 33 33 11

2323 23 23 22 33 33 22

1323 13 23 12 33

2 0

0

0

0

2 0

0

R P g P g P g

R P g P g P g

R P g P g P g

R P g P g

R P g P g P g

R P g P g

   

    

    



  

    

   

 

Розв’язком цієї системи будуть наступні значення i jP  

   



2 2

11 11 23 1323 12 12 33 1213 23 1212 33

1223 11 12 23 33 1313 22 2323 11

2

;

P M g g g R g g g g R g R g g

R g g g g R g g R g g

         

    

 

    

  

2

12 11 23 12 22 1323 12 22 1213 12 23 33

2 2 2 2

12 33 22 33 23 1223 11 23 1212 12 23 33 1313 12 22 23 2323 11 12 23

2 2

2 2 ;

P M g g g g g g R g g R g g g

g g g g g R g g R g g g R g g g R g g g

       

     

 

   

 



2 2

13 12 22 1213 12 33 12 33 22 33 23 1223 11 33

2 2

11 12 33 12 33 1323 23 1212 12 23 33

1313 12 22 23 33 2323 11 12 23 33

2 2 2

2

;

P M g g R g g g g g g g R g g

g g g g g g R g R g g g

R g g g g R g g g g

     

     

 

 

  

  

2 2 2

22 12 33 22 33 23 1223 11 12 23 11 12 23 11 22 33

11

2 2 2 2 4 2 2

12 22 33 1323 12 11 22 33 11 22 23 33 11 23 12 22 33 1212

2 2 2 2

11 12 22 33 11 12 23 11 22 33 11 22 23 12 22

2 3 2 2

3 2

2 2 2 2

M
P g g g g g R g g g g g g g g g

g

g g g R g g g g g g g g g g g g g R

g g g g g g g g g g g g g g g

      

     

      

  

   

33 1213 23

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 1313 22

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 2323 11 ;

g R g

g g g g g g g g g g g g g g g g g g R g

g g g g g g g g g g g g g g g g g g R g



        

       

 

 

     

   

  

2 2 2

23 22 33 23 1212 23 33 22 33 23 1313 22 23 22 33 23 2323 11 23

2

12 22 1323 12 23 33 12 33 22 33 23 1223 12 33

2 2 2

12 22 33 12 23 22 33 22 23 1213 33

2

2

2 2 ;

P M g g g R g g g g g R g g g g g R g g

g g R g g g g g g g g R g g

g g g g g g g g g R g

      

     

   

 

    





2 2 2 2

33 11 23 1323 12 33 12 33 1213 23 33 12 33 11 22 33

11

2 4 2 2 2 2

11 22 23 33 11 23 12 22 33 12 23 33 1313

2 2

1212 33 1223 11 12 23 33 2323 11 33

2

3 2

;

M
P g g g R g g g g g R g g g g g g g g

g

g g g g g g g g g g g g R

R g g R g g g g R g g g

         

    

    
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де g  − це визначник відповідної матриці метричного тензору;  

2 2 2

12 33 22 33 23 12 23 33

1

2 2
M

g g g g g g g g g g g

     

. 

Підставимо отримані значення у (7) з урахуванням 
4

R
P   і отримаємо відповідні 

значення для тензору Річчі: 

   



2 211
11 11 23 1323 12 12 33 1213 23 1212 33

1223 11 12 23 33 1313 22 2323 11

2
4

;

Rg
R M g g g R g g g g R g R g g

R g g g g R g g R g g

          

    

 

    

  

212
12 11 23 12 22 1323 12 22 1213 12 23 33

2 2 2 2

12 33 22 33 23 1223 11 23 1212 12 23 33 1313 12 22 23 2323 11 12 23

2 2
4

2 2 ;

Rg
R M g g g g g g R g g R g g g

g g g g g R g g R g g g R g g g R g g g

        

     

 

   

 



2 2

13 12 22 1213 12 33 12 33 22 33 23 1223 11 33

2 2

11 12 33 12 33 1323 23 1212 12 23 33

1313 12 22 23 33 2323 11 12 23 33

2 2 2

2

;

R M g g R g g g g g g g R g g

g g g g g g R g R g g g

R g g g g R g g g g

     

     

 

 

  

  

2 2 222
22 12 33 22 33 23 1223 11 12 23 11 12 23 11 22 33

11

2 2 2 2 4 2 2

12 22 33 1323 12 11 22 33 11 22 23 33 11 23 12 22 33 1212

2 2 2

11 12 22 33 11 12 23 11 22 33 11 22 23

2 3 2 2
4

3 2

2 2 2 2

Rg M
R g g g g g R g g g g g g g g g

g

g g g R g g g g g g g g g g g g g R

g g g g g g g g g g g g g g

       

     

      

  

   

2

12 22 33 1213 23

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 1313 22

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 2323 11 ;

g g R g

g g g g g g g g g g g g g g g g g g R g

g g g g g g g g g g g g g g g g g g R g



        

       

 

 

   

   

    

2 223
23 22 33 23 1212 23 33 22 33 23 1313 22 23

2

22 33 23 2323 11 23 12 22 1323 12 23 33

2 2 2 2

12 33 22 33 23 1223 12 33 12 22 33 12 23 22 33 22 23 1213 33

2
4

2 2 2 ;

Rg
R M g g g R g g g g g R g g

g g g R g g g g R g g g

g g g g g R g g g g g g g g g g g R g

     

    

      

   

 



2 233
33 11 23 1323 12 33 12 33 1213 23 33

11

2 2 2 4 2 2 2 2

12 33 11 22 33 11 22 23 33 11 23 12 22 33 12 23 33 1313

2 2

1212 33 1223 11 12 23 33 2323 11 33

2
4

3 2

.

Rg M
R g g g R g g g g g R g g

g

g g g g g g g g g g g g g g g g g g R

R g g R g g g g R g g g

       

       

    

 

Далі, отримані значення для тензору Річчі підставимо у (11) і отримаємо відповідні 

значення для тензора i ja : 
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   



2 20
11 11 11 23 1323 12 12 33 1213 23 1212 33

1223 11 12 23 33 1313 22 2323 11

1
2

2

;

C M
a g g g g R g g g g R g R g g

R

R g g g g R g g R g g

          

    

 

    

  

20
12 12 11 23 12 22 1323 12 22 1213 12 23 33

2 2 2 2

12 33 22 33 23 1223 11 23 1212 12 23 33 1313 12 22 23 2323 11 12 23

1
2 2

2

2 2 ;

C M
a g g g g g g g R g g R g g g

R

g g g g g R g g R g g g R g g g R g g g

        

     

 

   

 



2 20
13 12 22 1213 12 33 12 33 22 33 23 1223 11 33

2 2

11 12 33 12 33 1323 23 1212 12 23 33

1313 12 22 23 33 2323 11 12 23 33

2 2 2

2

;

C M
a g g R g g g g g g g R g g

R

g g g g g g R g R g g g

R g g g g R g g g g

     

     

 

 

  

  

2 2 20
22 22 12 33 22 33 23 1223 11 12 23 11 12 23 11 22 33

11

2 2 2 2 4 2 2

12 22 33 1323 12 11 22 33 11 22 23 33 11 23 12 22 33 1212

2 2

11 12 22 33 11 12 23 11 22 33 11 22 23

1
2 3 2 2

2

3 2

2 2 2 2

C M
a g g g g g g R g g g g g g g g g

Rg

g g g R g g g g g g g g g g g g g R

g g g g g g g g g g g g g

       

     

     

  

   

2 2

12 22 33 1213 23

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 1313 22

2 2 2 2 2 2 2

11 23 12 11 12 23 11 22 33 11 22 23 12 22 33 12 23 2323 11 ;

g g g R g

g g g g g g g g g g g g g g g g g g R g

g g g g g g g g g g g g g g g g g g R g

 

        

       

 

   

   

    

2 20
23 23 22 33 23 1212 23 33 22 33 23 1313 22 23

2

22 33 23 2323 11 23 12 22 1323 12 23 33

2 2 2 2

12 33 22 33 23 1223 12 33 12 22 33 12 23 22 33 22 23 1213 33

1
2

2

2 2 2 ;

C M
a g g g g R g g g g g R g g

R

g g g R g g g g R g g g

g g g g g R g g g g g g g g g g g R g

     

    

      

 

   

 



2 20
33 33 11 23 1323 12 33 12 33 1213 23 33

11

2 2 2 4 2 2 2 2

12 33 11 22 33 11 22 23 33 11 23 12 22 33 12 23 33 1313

2 2

1212 33 1223 11 12 23 33 2323 11 33

1
2

2

3 2

.

C M
a g g g g R g g g g g R g g

Rg

g g g g g g g g g g g g g g g g g g R

R g g R g g g g R g g g

       

       

    

 

Таким чином, доведена  

Теорема 4. У тривимірних звідних псевдоріманових просторах тензор i ja  

виражається через компоненти тензора Рімана, компоненти метричного тензора, 

скалярну кривину та параметрично залежить від однієї константи 0C . 

Розглянемо тривимірний звідний псевдорімановий простір І типу. Аналогічно 

отримуємо  

Наслідок 3. У тривимірних звідних псевдоріманових просторах І типу тензор i ja  

виражається через компоненти тензора Рімана, компоненти метричного тензора, 
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скалярну кривину та параметрично залежить від однієї константи 0C , а самі 

компоненти мають вигляд: 

 
0 1213 23 1212 33 1313 22 2323 11

11 11 2

22 33 23

21
;

2 2

C R g R g R g R g
a g

R g g g

  
 


 

0 1223 23 1323 22
12 2

22 33 23

;
C R g R g

a
R g g g





 

0 1223 33 1323 23
13 2

22 33 23

;
C R g R g

a
R g g g





 

 
 

2 2

23 22 33 1212 1213 22 23 1313 22 2323 11 220
22 22 2

22 33 23 11

2 21
;

2 2

g g g R R g g R g R g gC
a g

R g g g g

   
 


 

 
0 1212 23 33 1213 22 33 1313 22 23 2323 11 23

23 23 2

22 33 23 11

21
;

2 2

C R g g R g g R g g R g g
a g

R g g g g

  
 


 

 
 

2 2

23 22 33 1313 1212 33 1213 23 33 2323 11 330
33 33 2

22 33 23 11

2 21
.

2 2

g g g R R g R g g R g gC
a g

R g g g g

   
 


 

Розглянемо тривимірний звідний псевдорімановий простір ІІ типу. Аналогічно 

отримуємо  

Наслідок 4. У тривимірних звідних псевдоріманових просторах ІІ типу тензор i ja  

виражається через компоненти тензора Рімана, компоненти метричного тензора, 

скалярну кривину та параметрично залежить від однієї константи 0C , а самі 

компоненти мають вигляд: 

 
0 1212 33 1313 22 1323 12 2323 11

11 11

12 22 33

1
;

2 2

C R g R g R g R g
a g

R g g g

  
 


 

0 1323
12 12

33

1
;

2

C R
a g

R g
   

0 1223 11 1213 12
13 2

11 22 12

;
C R g R g

a
R g g g





 

   

 
12 22 1313 22 12 22 2323 11 1212 22 33 1323 12 220

22 22

12 22 11 33

1
;

2 2

g g R g g g R g R g g R g gC
a g

R g g g g

    
 


 

0 1223 12 1213 22
23 2

11 22 12

;
C R g R g

a
R g g g





 

 

 
22 12 1313 1212 33 1323 12 2323 110

33 33

12 22 11

1
.

2 2

g g R R g R g R gC
a g

R g g g

   
 


 

5 ВИСНОВКИ 

У роботі вдалося дослідити певні типи псевдоріманових просторів. Для звідних 

псевдоріманових просторів були отримані тотожності, які описують внутрішню 

геометрію цих просторів, а також доведено, що тензор Річчі та тензор типу 0
2
 
 
 

, який 

отримано з тензорної ознаки звідних просторів, комутують.  
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Також доведено, що для тривимірних звідних псевдоріманових просторів цей 

тензор типу 0
2
 
 
 

 виражається як лінійна комбінація метричного тензора та тензора Річчі 

і, як наслідок, згортка цього тензора з тензором Річчі виражається через цей тензор 

включаючи скалярну кривину. Розглянуто два типи цих просторів – обидва 

характеризуються блочно-діагональною структурою матриці метричного тензору, 

проте перший елемент матриці метричного тензору тривимірного звідного 

псевдоріманового простору першого типу є функцією лише від першої координати, а 

інші елементи з блоку рангу два цієї матриці залежать від другої та третьої координат. 

У другому типі останній елемент матриці метричного тензору залежить лише від 

третьої координати, а інші елементи з блоку рангу два цієї матриці залежать від першої 

та другої координат. Для цих типів у загальному випадку та для кожного типу окремо 

отримано значення для тензора типу 0
2
 
 
 

. Також було доведено, що у загальному 

випадку тривимірні звідні псевдоріманові простори за необхідністю є рекурентними, 

що автоматично означає їхню Річчі-рекурентність.  

Здобуті результати можуть мати застосування у подальших дослідженнях у сфері 

диференціальної геометрії, загальної теорії відносності та математичного моделювання 

фізичних явищ. 
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