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THE EXACT SOLUTION OF THE DIFFERENTIAL EQUATION
OF THE COMPELLED CROSS VIBRATIONS OF THE CORE
WITH ANY CONTINUOUS PARAMETERS

Yu. Krutii !, M. Surianinov?, V. Osadchiy *
'Odessa State Academy of Civil Engineering and Architecture

Abstract: The compelled cross vibrations of a core with any continuous variable parameters,
loaded with evenly distributed harmonious loading are considered. The exact solution of the
corresponding differential equation of vibrations in partial derivatives is constructed for the first time.
As a result, in an analytical look formulas for dynamic movements and internal efforts in any section
of a core are received. A practically important case is considered when the external dynamic load
acting on the core is harmonic. For the external friction, the hypothesis is accepted according to which
the resistance force is proportional to the mass and speed of the core, and the internal friction is taken
into account according to the Kelvin-Voigt hypothesis, where the internal resistance force is
proportional to the first degree of the strain rate.

As is known, the Kelvin-Voigt hypothesis in its pure form has several disadvantages. The main
one is that it leads to a contradictory experimental data conclusion about the frequency-dependent
internal friction in the material. This drawback can be eliminated if we accept the adjusted Kelvin-
Voigt hypothesis, according to which the coefficient of internal friction is chosen inversely
proportional to the frequency with which the structure oscillates.

The dynamic parameters of the core are fully defined. The obtained formulas contain unknown
constants in the form of initial values of real and imaginary components (initial parameters).
Additionally, the formulas which are equivalent to them are proposed. They are recommended for
practical use during the study of the oscillations, which are different, the amplitude functions of
dynamic parameters are clearly distinguished in them.

The solution of this problem opens up the prospect of creating a new method for studying the
transverse vibrations of the cores with arbitrary continuous parameters taking into account the
resistances. For this purpose, it is sufficiently to indicate an effective method for the numerical
implementation of the exact solutions.

The integration of fourth-order linear ordinary differential equations with variable coefficients
leads to problems associated with calculating the parameters of various systems; therefore, the method
for solving the problem proposed in the article has a value that goes far beyond the limits of the

considered problem.

Keywords: cross vibrations of a core, variable parameters, harmonic load, equation of
oscillations, Kelvin-Voigt hypothesis, exact solution.

TOYHUM PO3B’SI30K JUPEPEHIIAJBHOI'O PIBHSIHHSI
BUMYHIEHUX ITOITEPEYHUX KOJIUBAHb CTPU/KHA 3
JOBIVIbHUMH HEIIEPEPBHUMU ITAPAMETPAMU

Kpyriii 0. C., Cyp’sininos M. I'.}, Ocaxunii B. C.!

1 ; ) .
Ooecwvka depoicasna akademis 0yOieHuymea ma apximexmypu

AnnoTanis: Po3risgaroTbcs BUMYIICHI TOTIEPEYHI KOJMBAHHS CTPHXKHS 3 JOBUIBHHUMH
HEMEepepBHUMHU 3MIHHUMH TlapaMeTpaMH, HABAaHTAXKEHOTO PIBHOMIPHO PO3MOAIICHUM
rapMOHIITHMM HaBaHTaXeHHsSM. Bmeprmie noOynoBaHO TOYHMH pO3B’SA30K BIAMNOBIIHOTO
TuEepeHIianbHOTO PIBHSAHHS KOJIMBaHb B YaCTUHHUX TMOXIOHUX. SIK HaCHiOK, B
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AQHATITHYHOMY BHIVIAII OfepkaHO (opMynu Ajs ITUHAMIYHUX MEpeMIlleHb 1 BHYTPILIHIX
3yCWIb B JOBUIBHOMY Iepepi3i cTep)kHS. PO3rIsSHYTO MpakTHYHO BaXKJIMBUM BHUIAJIOK, KOJIU
Jif04e Ha CTPIKEHb 30BHIIIHS JUHAMIYHE HABAHTAKEHHS € TapMOHIHHUM. {7151 30BHIIIHBOTO
TEePTs NMPUHAMAETHCS TINOTE3a, 3TiJHO 3 SKOK CHJla OMOpYy IMPOMOpIiHHA Maci CTPHMIXKHA 1
IIBUJIKOCTI, a BHYTPIIIHE TEPTs BPaXOBYEThCS 3a rinoTe30t0 Kenbpina-PoxTa, 3riHO 3 SIKOIO
CWJIa BHYTPIIIHBOTO OTIOPY MPOMOPIIiiHA MEPIIOMY CTEIICHIO IMBUAKOCTI AedopmMarrii.

Sx Bimomo, rimore3a KenpBina-Doxrta B 1i 4HCTOMY BUTIJSAI Ma€ Ppsl HEHOMIKIB.
I'onoBHUI 3 HUX MOJSATA€E B TOMY, [0 BOHA MTPU3BOAUTH IO CYNEPEWINBOTO JOCITITHUM JaHUM
BHCHOBKY IIPO 4aCTOTHO-3aJIe)KHE BHYTPIIIHE TEPTs B MaTepiani. 3a3HaYeHUN HEJOIIK MOXeE
OyTu yCcyHyTHi, SKIIO NPUHHATH CKOpuroBaHy rinmoredy KenbBina-doxTa, 3rifHO 3 SKOIO
KOE(QIIIEHT BHYTPIIIHBOTO TEPTSI BUOUPAETHCS OOEPHEHO MPOIMOPILIHHUM YacTOTi, 3 SKOIO
KOJIMBA€ETHCSI KOHCTPYKIILiSL.

[ToBHiCcTIO BHM3HA4YeHI AWHAMIYHI MapaMeTpu cTpwxkHiA. OTpumani QOpMyIH MICTATbH
HEBIJIOMI CTaJli y BUIJISAAI MOYATKOBUX 3HAYEHb JIMCHHUX 1 YSIBHUX CKJIQJOBUX (TIOYATKOBI
napameTpH). J1o1aTkoBO 3alIpONOHOBaHI PIBHOCHIIBHI iM (hOpMYIIH, SKI pEKOMEHIYIOTHCS IS
NPAaKTHYHOTO 3aCTOCYBAaHHS MPU JOCTIKEHHI KOJIMBAHb, SIKi BIAPI3HAIOTHCS THM, IO B HUX
SIBHO BHJIUJICHI aMIUTITYAHI QYHKIIT IMHAMIYHUX TTapaMeTpiB.

Po3B’s30K mocTaBieHOi MPOOJIIEMH BiKpUBAE€ MEPCIEKTUBY JJsl CTBOPEHHS HOBOTO
METOAY JAOCIHI/DKEHHS TONEPEeYHHUX KOJHMBAHb CTPH)KHIB 3 JIOBUIBHUMH HENEPEPBHUMHU
napameTpamMH 3 ypaxyBaHHSAM omnopiB. [y IIbOT0 IOCTaTHBO BKa3aTH €()EKTUBHUN METO[
YHCEeNBbHOI pealtizanii 3HaiiIeHuX B poOOTI TOUHUX PO3B’SI3KIB.

Jlo iHTerpyBaHHs JIHIHHUX 3BHYAWHUX AU(EPEHIiaTbHUX PIBHSIHb YETBEPTOTO MOPSIKY
31 3MIHHUMHU KoedillieHTaMH TPU3BOAATH 3aBJAHHS, ITOB’s3aHI 3 PO3paxXyHKaMHU MapaMeTpiB
PI3HOMaHITHHX CHCTEM, TOMY 3allpOIIOHOBAaHMW B CTaTTi METOJ pO3B’S3aHHS 3a/1adi Mae
3HA4YEHH, 110 BUXOIMTH JAJIEKO 332 MEXKI PO3TIITHYTOI MPOOIIEMH.

Kiawuosi ciaoa: BumyineHi KoOJMBaHHS CTPHXKHS, 3MiHHI IapaMmeTpu, rapMOHiiHE
HAaBaHTA)XCHHS, PIBHAHHS KOJIMBaHb, Timote3a KenbBiHa-DoxTa, TOYHUH pPO3B’S30K.
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1 INTRODUCTION

It is commonly known, the estimation of bearing ability of any design typically involves
issues of strength, stability and dynamics. Historically, the most structural elements in various
branches of technology were carried out with the constant geometric parameters in terms of
cross section. From the mathematical point of view, in the calculations it leads to differential
equations (or their systems) with the constant coefficients. The exact solutions of such
equations are made in many cases. If it is impossible to do the approximate or numerical
methods are used.

However, the development of technology, the construction of large buildings, the success
of aviation, aerospace, shipbuilding have highlighted the issue of reduction in consumption of
materials. One of the most effective ways to achieve this goal is the design of systems with
variable parameters, in particular, variable stiffness. In the calculations of such systems the
differential equations (or systems of equations) with variable coefficients have to be dealt
with. The success of mathematics in the solution of these equations looks rather modestly.
Only certain special cases of the construction of exact solutions are known. This work is
devoted to the actual problem, namely, the formation of exact solution of the differential
equation of core’s forced transverse vibrations with arbitrary continuous parameters.

2 LITERATURE DATA ANALYSIS AND TARGET SETTING

The integration of linear ordinary fourth-order differential equations with variable
coefficients is led by the problems associated with calculating the parameters of various core
systems, which are of great practical importance for various fields of technology. We note the
work of I. Babakov [1], T. Danilevich [2], O. Galas [3], G. Maslov [4], V. Svetlitskii [5-6],
E. Kharchenko [7-9], F. Shevchenko [10]. Asymptotic or numerical methods of solution are
used in these works.

This article is devoted to the compelled cross vibrations of direct, generally speaking,
non-uniform core of variable cross section of length I, taking into account resistances.

We will combine an axis x with the line of the centers of gravity of cross sections of a
core and we will consider that its ends lie in points x=0 and x =1. Downward deflections of
the core are considered to be positive deflections.

The general scheme of vibrations is submitted in fig. 1. in fig. 2 the scheme of operating
efforts to a core element is represented at fluctuations.

Fig. 1. Forced cross vibrations of the core
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Fig. 2. Scheme of operating efforts to a core element

Here are the following notations:

g(x,t) —intensity of dynamic transversal loading reaction operating on a core;

m(x) — intensity of the distributed core weight (weight per unit weight);

y(x,t) —transversal movement of a point of the core axle with coordinate x in an instant
T (a dynamic deflection);

@(x,t) —dynamic angle of rotation;

M (x,t) —dynamic moment of deflection;

Q(x,t) —dynamic cross force;

r(x,t) —intensity of forces of internal resistance;

p(x,t) —intensity of external forces of resistance to move;
2

f(x,t)=—m(x)%—intensity of the inertial forces arising in the course of fluctuations
(strength of D'Alembert).

The corresponding differential equation of the cross vibrations, taking into consideration
resistance, is [1-3]:

;XZ (E(x)l(x)—}+m(x) + p(x,t) +r(x,t) =q(xt), Q)

where E(x)I(x) variable cross rigidity of a core;
E (x) —module of material elasticity of a core;
I (x) — moment of inertia of cross section of a core.

The equation (1) is true for model in which it is accepted to neglect longitudinal
movements of sections, their turns and shifts.

We will consider practically important case when external dynamic loading operating on
a core is harmonious

q(x,t) = q(x)sin 6t (2

where g(x) — continuous amplitude function of cross loading;

6 — frequency of the disturbing force.
For external, friction we accept a hypothesis according to which force of resistance is
proportional to the mass of a core and speed [11], and we will consider internal friction on
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Kelvin-Voigt hypothesis [12] according to which force of internal resistance is proportional to
the first degree of speed of deformation. In that case for intensity of forces of resistance we
will have:

p(x.) = am(x)ay, r(xt) =52 {a (E()l(x)—ﬂ @3)

where «, #—constant coefficients of external and internal friction respectively.
Equation (1) taking into account (2), (3) assumes following form

(1 A jaz (E(x)l(x) j+m(x)§y+am(x)ay_q(x)sm6t (4)

Let cross rigidity E(x)1(x), running mass of the core m(x) and amplitude function of
loading g(x) represent any continuous functions of coordinate X .

However, as we know, it is not possible to find exact solutions of differential equations
with variable coefficients in the most cases. This circumstance was one of the main reasons
for rapid development of approximate methods.

Above mentioned is also fully applicable to the equation (4). For example, in widely
known monograph [13], in regard to the special case of the equation (4) when «=4=0 and
g(x) =0, they say that it is possible to receive the exact solution only in some special cases.
Therefore the performance task, even in that specific case «=£=0 and q(x) =0, represents
a difficult and actual scientific problem. It is quite clear that the existence of transversal
loading and resisting forces in the equation (4) only complicate this problem.

Kelvin — Voigt hypothesis in its pure form is reported to have several disadvantages
[15, 16]. The main one is that it leads to a contradictory experimental data conclusion about
the frequency-dependent internal friction in the material. This disadvantage can be avoided if
we accept the adjusted Kelvin — Voigt hypothesis [15], according to which the coefficient g
is chosen inversely proportional to the frequency with which the structure oscillates.
Accepting the version of frequency-independent friction for external forces [15], for the
coefficients of external and internal friction we assume:
where v —is the coefficient of inelastic resistance of the circumscription, y —is the coefficient
of inelastic resistance of the material of the rod.

3 PURPOSE AND OBJECTIVES OF RESEARCH

The purpose of this article is to construct an accurate solution of forced transverse
vibrations of the core with arbitrary continuous variable parameters, loaded with a uniformly
distributed harmonic load. Using the predicted solution, it is required to obtain the formulas in
an analytical form for dynamic displacements and dynamic internal forces in an arbitrary
section of the core.

4 RESEARCH RESULTS

The solution of the equation (4) will be found out with the generalized separation of the
variables

y(x,t) =y,(x)sin&t +y,(x)cosét (5)

where Y, (X), Y,(x) - are unknown functions depending only on a variable X.
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Having accepted the formula for a dynamic deflection in the form of (5), for other
dynamic parameters of core’s state, namely, for the angle of rotation, deflection moment and
transversal force, there will be:

o(X,t) = ¢ (X)sin &t + ¢, (X) cos bt ; (6)

M (x,t) =M, (x)sin&t + M, (x)cosét ; @)

Q(x,t) =Q,(x)sin &t +Q,(x)cos bt , (8)
where

@, () =Y;(x); M;(x)=-E)1(X)¢;(x); Q;(x)=Mi(x) (i=12). ©)

Therefore, the dynamic parameters will be defined completely by the functions
Y;(X), @;(%), M;(x), Q;(x), (j=12), which we will call components for the dynamic

parameters.
Substituting in the equation (4) its representation (5) instead of unknown function
y(x,t), after apparent transformations, there will be

LEOTO)YL)" =82 m(x)(y,(X) +vY, (X)) = 7 (ECOT () Y5 (X)) ~ () [sin 6t +
+ECOT()Y5(x)" =" m(x)(¥, () = V¥, (x)) + 7 (EC)1 (x){(x))" |cos &t =0.

This equality is obliged to be for any value t, that can be achieved, only having equated
to zero multipliers at the functions sin6t and cosét. After that we will have the system of
two differential equations which we will write down in a matrix form

1 =7 (EC)H(X) Y, (x))" 1 v)(v(x) X
( i’ ]( T =0'm(x) g 1) . 9)
y LUEEIT(X)Y;(X) - 1\ Y,(¥) 0
The constant matrixes, appearing in the record of system, are given by the uniform
homothetic transformation to a diagonal look:

1 - 1+i 0 1 v 1-iv 0
gt v S- v s S = _’
y 1 0 1-iy -v 1 0 1+iv

where S =(

1. Ilj— is transforming matrix (i— imaginary unit). Thereof, carrying out the
substitution (9)
[yl(X)J:S(Z(X)J
Y,(0) (z(x))
where

209 = 200000 75y HOO—v ) w0

— new unknown functions, we come to two self-contained equations

LHAEM (020" -0 L= inm(0z00 =12 (11)
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(1—iy)(E(x)|(x)ﬂ"j" — O (L+ivIm(x)z(X) = @ (12)

It is important to notice that each of the equations (11), (12) is derived from another one
by the method of complex conjugation. Therefore, if z(x)—is the solution of the first

equation, the solution of the second will be m and vice versa. Therefore it makes sense to

consider only one of these equations.
Let's choose for further consideration the equation (11), which we will copy as follow

(E)N(X)2"(x))" — A2m(x)z(x) = 2(2‘;)” , (13)

where A2 =92ﬂ.
1+iy
Let's put in compliance to the equation (13) The system of differential equations
equivalent to it. Thus as a vector of indeterminate we will accept the following vector

z(X)
z'(x)
Z(X) =
)= ¢ (01 (X)2"(x) (14)
—(E()1(x)z"(x))’
Then
4z() _ P(X)Z(x)— f(x), (15)
dx
where
0 1 01 0 0
0 0 ————— 0
P(x) = EQI0) |, f09=-30 0]
~22m(x) 0 0 0 1
At the beginning we will find the fundamental solutions of the homogeneous equation
(EC)1(¥)Z"(x))" —2°’m(x)z(x) =0, (16)
to which the homogeneous system will be corresponded
920) _ pyz(x). (7
dx

For this purpose we will insert into consideration four infinite systems of unknowns for
four times continuously differentiable functions b, ,(x), b, (x) (n=12,3,4) (k=123,...).
By means of these functions and their derivatives we form the following ranks on parameter
degrees A°:

Un (X) = bn,o (X) + ﬂ’zbn,l(x) + l4bn,2 (X) + /Iebn,S(X) AR (18)
Ur: (X) = br:,O (X) + ﬂ“zbr;,l(x) + /IAbr:,z (X) + /Iebr;,s(x) AR (19)
Ur:'(x) = br:fo (X) + ﬂzbr:fl(x) + l4br,1f2 (X) + /Ieb,:f3(x) AR (20)
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52 https://doi.org/10.31650/2618-0650-2019-1-2-46-61




Ne2, 2019
Crop. 46-61 / Page 46-61

MexaHika Ta maremMaTudHi meromu [/
Mechanics and mathematical methods

(EQ)TOU, ()" = (E(x)1(X)byo (X)) + A*(E() 1 ()b, (X)) +
+AHE) (b, (X)) +++;

(ECOT QU ()" = (EC) ()b, (X)) "+ A*(E() 1 ()b, (X)) +
+AHEM) ()b, (x))"+++-

(21)

(22)

So we assume that all the ranks evenly converge on the segment x €[0,1].
Unknown functions b, ,(x), b, (x) (n=1,2,3,4) (k=12,3,...) Will be found from the

statement that U A (x) Satisfies the equation (16), that is
(E(X)TOQU(X)" = A’m(X)U . (x) =0 (n=1,2,3,4). (23)
Then, taking into account the formulas (18), (22), we come to solve the equality
(EC) ()b (X)) + gﬂtzk ((EGOTOOBY, ()" =m(x)b,, 4 (X)) =0

Thus, equating to zero all the coefficients at degrees A%, including zero degree, we will
have:

(ECAT (00,0 (x))" =0; (24)
(EC1 )by, (x))" =m(x)b, 4 (x) (k=1,23,..). (25)

It is easy to write out fundamental system of solutions (24). Before integrating the
equation (25), for all n=1,2,3,4 we will set boundary conditions

b, (0) =y, (0) = E(0)1 (0)by, (0) = (E(0)1 (0)b;, (1)) =0 (k=1,2,3,...) . (26)

As a result we will have:

b,o(X) = X" (N =1,2), b, ,(x)= ! ! 00100 dxdx (n=3,4) ; (27)
X X 1 X X

by, (X) = ! l 000 ! ! m(x)b, , , (x) dxdxdxdx (k =1,2,3,...). (28)

Thus, accordingly to the recursion formula (28), each initial function b, ,(x) has its own
multiplicity of functions b, (x) (k=12,3,...) which will be called generating. For such

functions the equalities (23) are identically kept under the formation.
For descriptive reasons we will write down the formula (28) also in expanded form

b, (X) = ”m” m(x)”m” m(x)b, , (X)dxdxdxdx...dxdxdxdx . (29)

The number of integrals in this formula, without considering the integrals which may
contain initial functions, is equal to 4k.

We investigate now a row (18) as for convergence. To construct majorant row, the
positive constants will be used.

1
X 10,17 m’ h, =max, 4o 1y

bn,o(x)| '

9, = MaX, o, M(X), g, =m

Then for forming functions (30) from the formula there are some estimates
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-

Hence, for the row, made from the modules we receive

4k

b, (9] < h, (9,9,)" ,(0,9) Gy (K =123

O Sy <
o'—.x
o'-—-.x
O Gy <
O T <

I dxdx ... dxdx| =
0

0,0 00|+ 47,00 +[ 2", (9] +- <h(1+glgzﬂ” +(9192)2/148| ')Z

- h_zn(ch 9,0,4°x + cos:‘fglgzﬂzx).

The majorant one within the multiplier is apparently the sum of the elementary functions.
Each of them is defined by the row which evenly meets. Therefore, the row made of modules
also meets evenly. The ranks (18) are proved to meet absolutely and evenly.

Similarly it is possible to prove absolute and uniform convergence of the ranks (19) -
(21). Convergence of the row (22) does not demand the separate proof as it, according to the
identity (23), differs from the row (18) only by a multiplier. As a result, ranks (18) - (21) can

be differentiated termwise, so, the designations, U/ (x),U;(x), (E(x)I(X)U/ (X)),
(E()1(x)U/(x))" for ranks (19) - (22) are true.
Therefore, four solutions U, (x) (n=1,2,3,4) of the equation (16) are defined by

formulas (18), (27) - (29). According to formula (14) we receive four vectors — system
solutions (17)

U, (x)

U, (x)
—E()1(x)U(x)
—(EC10QU (X))
Then the matrix, made of these vectors,
Q(x) =[Z,(x) Z,(x) Z5(x) Z,()|,

Z (X) = (n=1,2,3,4). (30)

also satisfies the system.
Let's calculate the value ©(0). For this purpose at the beginning the formula for

calculation Z_(0) (n=1,2,3,4) has to be worked out. Having x=0 in formulas (18) - (21)
and considering boundary conditions (26), we receive

U, 0 o)
) U, (0 _ Pho©)
207 eonouyo |7 -E@10p,©0 | -

—(E@HOU©0)) (~(E()1(0)b;,(0))

Hence

0 0 0

1 0 0
Zl(o) = 1 Zz(o) = O 1 Z3 (0) = _1 1 Z4 (O) = O '
0 0 1

O OOk

Therefore,
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Q(0) =

00
0 0

2
0

O O ok
o o - O
|_\

For Wronskian W (x) =|Q(x)|, considering equality (32), we receive W (0) =1+ 0. So
the vectors (30) are independent linearly. The matrix Q(x) is a fundamental matrix of
system (17).

Multiplying on the right Q(x) by a constant matrix Q*(0), we will receive a new
fundamental matrix

U, (x) U, (x) —U,(x) -U,(x)

AG) = Ui(x) U;(x) -U3(x) ~U;(%) |
—EQ)IOQUL (%) —ECYIUZ(x)  ECQTOUS(X)  EC)T()UL(X)
—(EQ)TOQUL ()" —(ECYT)UZ (X)) (ECQTOQUL (X)) (EQ)TO)US (X))

for which
1000
AO=0 01 g @
0001

The fundamental matrix, meeting the condition (33), is unambiguously and is called as a
matrizant [17]. Considering that, SpP(x) =0 for the determinant of the matrizant by formula
of Jacobi [17] we have

W (x) =|A(X)| = |A(O)|exp( j SpP(x)de =1. (34)

Using the properties of the determinants, it is possible to establish the dependence
between Wronskian W (x) of vector system (30) and Wronskian w(x) of function system

U.(x) (n=12,34)

U,() Uy(0 U400 U0
UI0) U300 U300 U5()
UI( UZ60 U300 Uj ()
U109 U300 U3"() U;" ()

w(x) =

This dependence will be expressed by the equality W (X) = (E(x)1(X))*W(X). Then
taking into account (34) We receive W(X) :],/ (E(x)1(x))* #0.

As the linear independence of the relevant system of functions [17] follows from an
inequality to zero of Wronskian, functions U, (X) (n=1,2,3,4) are independent linearly, so,
they form fundamental system of solutions of the equation (16).

For the specific solution of the nonuniform equation (13) there is

1
2(1+1y)

U.(x)= Ug(x). (35)
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Thus U, (x) by analogy to the formula (18) we will search as follows

US(X) = bs,o(x) +ﬂ“2b5,1(x)+/14b5,2(x) + /16b5,3(x) +eeey (36)

where the functions b, (x) (k =0,1,2,...) can be defined.
Substituting the value U, (x) in the equation (13), we will receive

(ECT(X)bs (x))" —a(x) + 2/1” ((EGO10OBL, ()" =m()bg, 4 (x)) =0.

For satisfaction of this equality, it is necessary to equate to zero all the coefficients at
degrees A%, starting from zero degree. The coefficient at zero degree is apparently equal to
(E() ()0 (x))” —q(x) . Therefore, we will have:

(EGOTObS, ()" =a(x) ; 37)
(EGO1(9b5) (X)) =m(x)bg) () (k=1,2,3,...). (38)
The quality (38) is similar to the equality (25) by its form, and the equality (37) differs

from the equality (24) by existence of a right part. For required forming functions
b, (x) (k=123,...) the formulas (28), (29) will be fair but taking into account n=5. We

will choose the following partial solution of the equation (37) as an initial function
B X X 1 X X
byo(X) = ! ! 0100 ! ! q(x)dxdxdxdx .

But the property of an initial function is
b, (0) = b5, (0) = E(0)1(0)bs, (0) = (E(0)1 (0)5', (0))" = 0. (39)

Thereby, the partial solution of the equation (13) is found. According to the known
partial solution (35) we form a vector
Us(x)
_ 1 Us(x)
2(1+ip0) | —E(x) 1 (x)U:'(x)
—(E()1 (U (X))’
which will be the partial solution of the system (15), what can be easily proved by the
substitution. Besides, taking into account (31), (39), there is
U, (0) 0
3 1 U:(0) |0
2(1+ipo)| —E(0)I1(0)U.(0) 0|
-(E(0)1(0)U5(0))') \0

s (x)

¥5(0)

Finally, the general solution of the system (15) looks like [17]
Z(x)=A(X)Z(0)+¥;(x) . (40)

On the other hand, differentiating the first formulas (10) and considering thus for the
vector Z(x) we will receive
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2(x) y; (X) +iy, (X)
z'(x) _ 1| a(X) +ig,(x)
—E)I(X)Z2"(X) | 2] M) +iM,(x) |
—(E()1(x)2"(x))’ Q. (%) +1Q,(X)
Having regard to (41), the matrix equality (40) Has to be rewritten in extended form. As
a result we will come to the formulas:
A ';iyz (X) _ ¥.(0) ';iyz (0) U,(x) + ¢(0) ';i(pz (0) U, (x) -
~ M, (0)+iM,(0) U,(x) - Q,(0) +iQ,(0) U,(x) + U, (%);
2 2 2(1+1y)
@ (X) ';I(D?_(X) _ ¥,(0) ';Wz (0) U/(x) + ¢ (0) ‘;I(/’z (0) UL(x) -
_Ml(o)+IMZ(O)Ué(X)_Ql(O)+IQ2(0)U:1(X)+ 1 USI(X)’
2 2 2(1+1iy)
Ml(x) _;”VIZ(X) — _E(X)I (X)( yl(o) ';'yz (O) UlH(X) + Q’l(O) ;I(DZ (O) U;(X) _
_ Ml(o)+IMz(O)U?:!(X)_Q1(0)+|Q2(0)U£r(x)+ 1 Uér(x)] ,
2 2 2(L+iy)

Z(x) = (41)

(42)

(43)

(44)

- 20210 e 1 09uz o0y -+ M € 091 0900y + (45)

1
2(1+iy)

+ Q1(0) +2in (0) (E(X)! (X)UZ(X))' _ (E()1 (X)Ué’(X))’ .

So, the complex functions, which real part is the components
Y, (%), ¢,(X), M, (X), Q(X), are found, and the imaginary part are the components
Y,(X), @,(X), M,(x), Q,(x). Adapted to circumstances, we will distinguish the real and
imaginary components of dynamic parameters (5) - (8).

U,(X)=ReU, (x)+ilmU_(x) (n=12,3,4,5) are used and the right members of the

formulas (42) - (45) are transformed, having allocated there the real and imaginary parts. As a
result, for the real components of dynamic parameters we will receive:

yl(X) = yl(o) ReUl(X) +¢1(0) REUZ(X) - Ml(o) ReUs(X) _Ql(o) ReUA(X) -
—Y,(0) ImU, (x) = ¢,(0) ImU, (x) + M, (0) ImU(x) +Q,(0) ImU, (x) + (46)
1 (ReU,(x)+7 MU, (x));
1+y
@ (x) = ¥, (0) ReU(x) + ¢, (0) ReU; (x) — M, (0) ReU; (x) —Q,(0) ReU 4 (x) —
—Y,(0) ImU{(X) —,(0) ImU;(x) + M, (0) ImU(x) + Q,(0) ImU ;(x) + (47)

+%(Reug(x)+7lmus’(x));
1+y
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M, (x) =—E(X)1 (x)[y,(0) ReU,(x) + ¢,(0) ReU(x) — M, (0) ReU(x) -
-Q,(0) ReU,(x) — y,(0) ImU,(x) — ¢,(0) ImU j(x) + M, (0) ImU ;(x) + (48)
+Q,(0) ImU /(x) +i2 (ReU/(X)+y ImUs”(x))];
1+y
Q () ==y, (O)(EC) 1 (x) ReU(x))" — ¢, (0)(E(x) 1 (x) ReU (X))’ +
+M, (0)(E(x)1(x) ReU (X)) + Q (0)(E(x)1 (x) ReU,(x))" +
+¥,(O)(EC)1(X) ImU(x))" + ¢, (0O)(EC) 1 (x) ImU (X)) — (49)
—M, (0)(E(x)1(x) ImU (X))’ = Q, (0O)(E(x) 1 (x) ImU (X))’ -

1 : 7 (ECT () ReU (X)) + 7 (EC) 1 (x) ImU;(x))).
+

For imaginary components of dynamic parameters we will have:
¥,(X) = ¥,(0) ReU,(x) + ¢,(0) ReU, (x) - M, (0) ReU,(x) - Q,(0) ReU ,(x) +

+9,(0) IMU, (%) + 9,(0) IMU () ~ M, (0) ImU_,(x) - Q, (0) ImU, (x) + (50)
+—L(ImU, (%)~ ReU, (x);
1+y
2,(X) = ¥, (0)ReU.(X) + 9,(0) ReU () — M,,(0) ReU(x) — Q, (0) ReU(x) +
+9,(0) IMU(x) + ,(0) IMU3 () — M, (0) ImU5(x) — Qu(0) ImUS (%) + (51)

1 1 ’ .
+m(|mus(x) —y ReU{(X));

M, (X) =—E()1()[y,(0)ReU,(x) + ¢,(0) ReU;(X) - M, (0) ReU;(x) -

—Q,(0)ReU,(x) + y,(0) IMU(x) + ¢ (0) ImU;(x) — M, (0) ImU ;(x) — (52)
1
1+ 7/2

Q. (%) ==Y, (0)(E() 1 (x) ReU (X)) -, (0)(E(x) I (x) ReU(x)) +
+M,, (0)(E(x) 1 (x) ReU;(x))"+Q, (0)(E(x) 1 (x) ReU, (X)) -
=Y (Q)(EC)1(x) ImU/(x))" =, (O)(E(x) 1 (x) ImU(x))" + (53)
+M, (0)(E(x) 1 (x) ImU;(x))" + Q,(0)(E(x)1 (x) ImU,(x))" -
+172 (EGOT) ImU(x)) = 7 (E(X) 1 (x) ReU¢/(x))).
For the sake of clarity it was necessary to indicate the real and imaginary parts at

functions U, (x) (n=1,2,3,4,5) in an explicit form. As a result we will present number A° in

a trigonometrical form.
On the basis of trigonometrical form of numbers’ designation 1—iv and 1+iy, for

number A2 we will have

—Q,(0) ImU/(x) + (ImUZ(x) — yReU/(x)];

H 2
A :921_!‘/ =6 1“/2 (cosS—isind),
+iy +y
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where & =arctgv +arctgy. Thus any natural degree k of number A% can be calculated,
having used Moivre formula

2 \2

A% = g2 1V 1% ok —isinks) . (54)
1 2
+y

As a result, for the fundamental solutions (18) and function (36), taking into account
(54) , we receive

U,()=b,,(x)+> 1%, , () =b, () + 3 0% cosks b,  (x) ~i > ©* sinks b, , (¥)
k=1 k=1 k=1

(n=12,3/4,5),

2
Where @ =@ o[V
1+7/2

Thus, the dynamic parameters of the core are completely determined by formulas (5) -
(8), (46) - (53). Be it noted that these formulas contain unknown constants in the form of
initial values of the real and imaginary components (initial parameters). For instance, the
exact solution of differential equation of the forced transverse harmonic vibrations of the core
taking into account the resistance (4), which is given by formulas (5), (46), (50), is found.

At last we will notice that in practice for the research of vibrations instead of formulas
(5) - (8) it is effectually to use formulas equivalent to them:

YO) = YOSIn(@t-+ 7,000, YOO =IO+ VAR, 7, (0 =arctg Y20 (55)
P(x) = p(8in(@ + 7,09), 900 = () + 0200, 7,09 =arctg 20 (56)
M () =M OOSIn(@t-+ 7, 09), MO0 = M0+ MZ00, 4,09 =aretg g i (57)
Q) = QUISIN(Et+ 74(X). Q) = RI)+QI0), 7o =arcta i (59)

Advantage of formulas (55) - (58) is that amplitude functions of the dynamic parameters
are obviously distinguished in them.

5 CONCLUSIONS

In this work the differential equation of the forced transverse vibrations of the core with
any continuous variable parameters, loaded evenly by the distributed harmonic load is
integrated for the first time. As a result, in an analytic form the formulas are received which
allow to define the forced dynamic vibrations y(x,t), ¢(x,t) and dynamic internal forces
M (x,1), Q(x,t) from harmonic loading q(x,t) =q(x)sinét, where the task at any fixing of
the core is to search unknown initial parameters.

The solution of this problem opens a prospect for creation of a new research technique of
transverse vibrations of the cores with any continuous parameters taking into account
resistances. For this purpose it is enough to indicate an efficient method of numerical
implementation of the exact solutions.
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