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PROBLEMS OF EVOLUTION OF RIGID BODY MOTION
SIMILAR TO LAGRANGE TOP

D. Leshchenko!, T. Kozachenko®
'Odesa state academy of civil engineering and architecture

Abstract. The problem of evolution of the rigid body rotations about a fixed point continues to
attract the attention of researches. In many cases, the motion in the Lagrange case can be regarded as a
generating motion of the rigid body. In this case the body is assumed to have a fixed point and to be in
the gravitational field, with the center of mass of the body and the fixed point both lying on the
dynamic symmetry axes of the body. A restoring torque, analogues to the moment of the gravity
forces, is created by the aerodynamic forces acting on the body in the gas flow. Therefore, the
motions, close to the Lagrange case, have been investigated in a number of works on the aircraft
dynamics, where various perturbation torques were taken into account in addition to the restoring
torque.

Many works have studied the rotational motion of a heavy rigid body about a fixed point under
the action of perturbation and restoring torques. The correction of the studied models is carried out by
taking into account external and internal perturbation factors of various physical nature as well as
relevant assumptions according to unperturbed motion.

The results of reviewed works may be of interest to specialists in the field of rigid body
dynamics, gyroscopy, and applications of asymptotic methods. The authors of this papers
present a new approach for the investigation of perturbed motions of Lagrange top for
perturbations which assumes averaging with respect to the phase of the nutation angle.
Nonlinear equations of motions are simplified and solved explicitly, so that the description of
motion is obtained.

Asymptotic approach permits to obtain some qualitative results and to describe evolution
of rigid body motion using simplified averaged equations. Thus it is possible to avoid
numerical integration. The authors present a unified approach to the dynamics of angular
motions of rigid bodies subject to perturbation torques of different physical nature. These
papers contains both the basic foundations of the rigid body dynamics and the application of
the asymptotic method of averaging. The approach based on the averaging procedure is
applicable to rigid bodies closed to Lagrange gyroscope.

The presented brief survey does not purport to be complete and can be expanded.
However, it is clear from this survey that there is an literature on the dynamics of rigid body
moving about a fixed point under the influence of perturbation torques of various physical
nature. The research in this area is in connection with the problems of motion of flying
vehicles, gyroscopes, and other objects of modern technology.

Keywords: rigid body, Lagrange’s case, rotation, perturbation torque, restoring torque.

MPOBJIEMM EBOJIIOIIII PYXY TBEPJIOI'O TLIA, BJIU3bKOI'O
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Y00ecvra deporcasna axademis 6ydisnuymea ma apximexmypu

Anotanis. [Ipobnema eBomro1ii 00epTaHb TBEPAOTO Tijla HABKOJIO HEPYXOMOI TOUKH MPOJOBKYE
MPUBEPTATH yBary JOCHiTHHUKIB. B OaraThox BHIaakax pyx B BUMaAKy JlarpaHka MOXe pO3IIsgaTucs
SIK TIOPOJKYBILHUI PyX TBEPAOTO Tijla. B 1[bOMY BHIIA/IKY TiIO Ma€ HEPYXOMY TOYKY 1 3HAXOIMTHCS
B IpaBiTallifHOMYy TOJi 3 LEHTPOM Mac Tijla Ta HEPyXOMOIO TOYKOIO, sIKi oOMIBa JieXkaThb Ha OcCi
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IuHaMigHOT cuMeTpii Tima. BigHOBIIOIOYMIT MOMEHT aHAJOTIYHUN TpaBiTAIliHHOMY MOMEHTY
CTBOPIOIOTHCS ACPOJMHAMIYHMMHU CWJIAMH, SKI JIIOTh Ha TUIO B MOTOI ra3y. Takum YWHOM, PyXH
TBEPAOTO TiNa, sIKi OMM3bKI 10 BUMAAKy Jlarpamka, TOCHiIKYIOTECS B UCIEHHUX POOOTaxX 3 TUHAMIKA
JTANBHUX anaparis, A€ pi3Hi 30ypeHHS PO3TISIAIOTHCS Pa30M 3 BiAHOBIIOIOYHNM MOMEHTOM CHII.

B GaraTpox poboTax IOCTIKYETHCS 00epTaIbHUN PyX TBEPAOTO Tija HABKOJIO HEPYXOMOi TOUKH
MiJ Ji€r0 30ypIOIOYMX Ta BiJHOBJIIOBAHMX MOMEHTIB CWJI. YTOYHCHHS JOCIIIPKYBaHHX MOJCIeH
MIPOBOANTHCSA 3 PO3TJSIIAHHSAM 30BHINIHIX Ta BHYTPIMIHIX 30yproroumx (akTopiB pizHOi (izudHOT
MIPUPOIU TaK 1 Pi3HHUX MPHITYIIEHb BITHOCHO TOPOKYBAIBHOTO PyXy. Pe3ynbraT mpuBeaeHnx pooiT
MOXYTh OyTH KOPHUCHMMH JUIsS CHEIHaNiCTIB 3 JUHAMIKM TBEPAOrO TUIa Ta 3acTOCYBaHb
ACUMIITOTHYHUX METOJIIB.

ABTOpY TIMX CTaTel MPEACTaBISIIOTh HOBUM MIAXi[ JUTSL JOCTiKEHHS 30ypeHuX pyXiB BOBUKA
Jlarpamxa amns 30ypeHb, SKi MPUITYCKaIOTh ycepeAHeHHs mo ¢a3i KyTa HyTauii. HemiHiiHI piBHAHHS
PYXY CHpOIIYIOTECS Ta PO3B’SA3YIOTHCS, TA OMUCYETHCA PYX Tijla. ACUMIOTOTHYHHMNA MiAXiA J03BOJISE
ONlep’KaTH JesKi SKICHI Pe3yJibTaTH Ta CIUCATH EBONIOMII0 PYyXy TBEPAOTO Tija 3 IOTIOMOTOIO
CIpOLICHUX YCEpeNHEHHX piBHSAHb. [loTiM 3AIHCHIOETBCS 4YHCENbHE I1HTErpyBaHHSI. ABTOpH
MPEICTABISIFOTh YHI()IKOBAaHUHM MiAXiJ A0 AWHAMIKK PyXiB TBEPAOrO Tija MiJ €0 MOMEHTIB CHJI
pizHO1 (hizmunoi mpupoan. Lli cTaTTi mpeacTaBnsioTh Ak 6a30Bi OCHOBH AMHAMIKK TBEPAOTO Tijla Tak i
3aCTOCYBaHHS ACHMIITOTHYHOTO MeTony ycepemHeHHs. Ilinxinm, sikuii Oa3yeTbcs Ha mpouemypi
yCepeTHEHHS 3aCTOCOBYEThCS 0 TBEPIUX TiJl, ONM3BKUX 110 Tipockona Jlarpamka.

Hananwif KopoTKHii OTIIsi HE IPETEH/Iy€E HA TOBHOTY 1 MOXe OyTH posmmpeHuM. OHaK 3 I[OTO
orsily MU Oa4MMO HAasBHICTh JITEpaTypyd 3 OUHAMIKK TBEPAOTO Tijla, MIO PYXAE€THCS HABKOJIO
HEPYXOMOI TOUKH IIiJT €0 30yPIOI0YMX MOMEHTIB CHJI Pi3HOI (izuuHoi npupoau. JJocmimkeHHs B ik
rainy3i 3HaXxoAATh 3aCTOCYBaHHS B JIMHAMIlli JIITAIILHUX anapariB, TIPOCKOMIB Ta iHIIUX 00’ €KTiB
Cy4acHOI TEXHIKH.

KawuoBi ciaoBa: TBepme Tino, Bumamok Jlarpanxka, oOepTaHHSA, 30YyprOIOUMiI MOMEHT,
BIJIHOBJIFOIOYHNHA MOMEHT.

bimmii [1. B., JJoboxa B. B.
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1 INTRODUCTION

At present in dynamics of a rigid body with fixed point there is bibliography on the
theoretical researches of the perturbed motions, that are close to Lagrange case, and on the
applications to dynamics of space vehicle and flying machines, of gyrosystems and other
engineering objects. Here the brief survey is given, that is devoted to the investigations results
for indicated problems. Only the papers are mentioned here, that are the most close to the
results of author and his colleagues.

2 LITERATURE DATCAE ANALYSIS AND TARGET SETTINGS

One of the significant areas of investigation in mechanics is a rigid body’s motion about
a fixed point. As one of the fundamental problems in dynamics it caught interest of well-
known scientists throughout the history of its development.

A high volume of works exists regarding the perturbed motions close to Lagrange top, as
well as application in the problems of flying vehicles’ entry into atmosphere [1, 2], rotating
projectile’s motion [3], gyroscopy [4-8].

Problems in terms of their theoretical aspect attract attention of specialists in the field of
theoretical mechanics. The framework of dynamic unperturbed rigid body models — Lagrange
case — allows rigorous formulation of the problems. The refinements of the models under
investigation takes place taking into consideration the perturbation torques of different
physical nature, both internal and external, and the corresponding suppositions regarding the
unperturbed solution.

The mathematical description of symmetrical top motion in the field of gravity is a
solved problem in the dynamics of a rigid body. Solution to this problem was first obtained by
Lagrange and published in 1788. Many advanced treatises of classical mechanics include this
problem [3, 5-10].

3 PURPOSE AND OBJECTIVES OF RESEARCH

We consider the evolution of the dynamics of rigid body motion about a fixed point under the
various perturbation torques. The basic method applied in these studies is the Krylov-Bogoliubov
asymptotic averaging method.

4 RESEARCH RESULTS

The motions similar to Lagrange case were analyzed in several works in dynamics, in the
given works perturbation torques were taken into consideration with restoring torque. The
investigations of rigid body dynamics can find application in the area of astronautics.

V.S. Aslanov’s monograph [2] studies the rigid body’s motion in the atmosphere under
the action of biharmonic air dynamic torque and small perturbations. In this paper, he notes
the resemblance between the heavy rigid body and the rigid body in a resisting medium
(planet atmosphere).

Numerous works [1, 2, 5, 11-22, 27, 29-31, 37, 39, 42-44] have analyzed the perturbed
motions of a rigid body similar to Lagrange top.

Works [5, 11] describe the first approximation for the averaging procedure for slow
variables of a perturbed motion of a rigid body close to Lagrange’s case. In many cases,
applied problems permit averaging over the phase of nutation angle. A perturbed motion close
to Lagrange’s case is analyzed taking into consideration the torques that affect the rigid body
from external medium.
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Paper [12] investigates the evolution of the rigid body’s motion under the effect of an
unsteady perturbation torque, the rigid body being close to the Lagrange gyroscope. The
concept of the given problem is analyzed in article [13], when restoring and perturbation
torques vary slowly in time. The primary objective of this study is to broaden the results of
works [5, 11-13] for the problem of dynamically symmetric rigid body motion under the
action of restoring and perturbation torques independent or dependent on slow time.

Paper [14] considers the perturbed fast rotation of a rigid body which is close to regular
precession in the Lagrange case. Work [15] describes a more general occurrence of the
evolution of rotations, where the value of the restoring torque is dependent on the nutation
angle.

Paper [16] analyses the perturbed motion of the rigid body, similar to regular Lagrangian
precession, affected by slowly time-varying perturbation torque, as well as restoring torque,
dependent on the nutation angle. Papers [17, 18] research the evolution of rotations of a rigid
body, similar to regular precession, influenced by a restoring torque, dependent on slow time
as well as nutation angle; and by a perturbation torque that slowly varies in time.

We presented in [20] some new qualitative and quantitative results of fast motion of a
heavy top subject to small perturbation top subject to small perturbation torques. We
suggested a new procedure of the averaging method, different from works [5, (sections 4.8.2,
11.3, 11.3.2), 14]. Works [5, 11-20] provide an overview of the received results in rigid body
dynamics, as well as a bibliography.

Paper [21] analyzed a symmetric rigid body’s motion, similar to the case of Lagrange,
influenced by perturbation torques, Newtonian force field and gyro moment vector. It has
been endeavored to utilize the averaging procedure in regard to the nutation phase angle,
proposed in works [5, 11]. The averaging procedure suggested for investigation of the
Lagrange’s top fast rotation in works [5, 14] was applied for analysis of rigid body’s
rotational motion in article [22], in presence of Newtonian field of force, gyro and
perturbation torques.

When axisymmetric magnetized body moves in constant field, close to regular
precession, the following equations coincide: motion of the satellite to motion of the Lagrange
gyroscope. It is known that a dynamically symmetric satellite moves the same way as a heavy
rigid body in the Lagrange case, once the satellite possesses a magnetic torque moved along
dynamic symmetry axis [23].

The resemblance of the problem of Lagrange’s top motion in case of potential
perturbations to the problem of satellite’s rotation can be observed. The latter’s mass center
repositions in the equatorial plane’s circular orbit, being affected by the Earth’s magnetic field
[24-26]. Article [27] indicates new results of negligibly asymmetric heavy top’s motion,
subject to small viscous damping.

While studying a heavy unbalanced gyrostat’s motion with an arbitrary torque of internal
interaction [28], equations of motion first integrals coincide with corresponding first integrals
of rigid body motion in Lagrange’s case.

Paper [29] considers heavy symmetric rigid body’s motion, the body having a fixed point
under effect of frictional forces originated from the surrounding dissipative medium.

In the works [5 (Sections 4.8.2, 11.3), 14-18, 22] the perturbed fast rotational motions of
a rigid body, close to regular precession in Lagrange’s case, were studied for different orders
of smallness of the projections of the perturbation torque vector. In work [5 (Section 4.8.3)],
the perturbation torques are small compared to the restoring one. In contrast to work [5
(Sections 4.8.1, 11.1, 11.2), 11-13, 21, studies 14-18, 22] considered the case of a rigid body
that rotates rapidly about the axis of dynamic symmetry, and therefore the unperturbed
solution was not the trajectory of motion in Lagrange case, but rather some simpler solution.

In paper [30] the author analyzed lower-order resonances throughout Lagrange top’s
motion, having small mass asymmetry. In article [31] a case similar to Lagrange top was
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explored, where secondary resonance effects in the spherical motion of a heavy asymmetrical
rigid body with moving masses were investigated.

Interest to rigid body rotation about a fixed point attracts a wide circle of specialists, and
not only in rigid body dynamics, but also in control theory [32], hydrodynamics [33], physics
[34], and elasticity theory [35].

Dissipation is an important factor of determination of heavy symmetric top’s motion. In
work [36] dragging is estimated with simple models, and is investigated as torque in Euler
equations to be solved numerically. In article [37] the authors considered rotation about a
fixed point of a heavy dynamically symmetric rigid body with arbitrary asymmetric cavity
completely filled with ideal fluid in a resisting medium. The condition of asymptotic stability
of the uniform rotations of an asymmetric rigid body in a resisting medium was obtained in
[38]. Paper [39] studies heavy symmetrical top’s motion, with a cavity filled with viscous
fluid, when the axis of the top is diverged from vertical.

In article [40] authors compute in the Lagrange case the Euler angles of precession v and
proper rotation ¢ in actual form through hypergeometric functions. The motion of
symmetrical rigid body without weight under viscous dissipation was studied. Author of work
[41] considers an analytical solution for the dynamics of axially symmetric rotating objects.
This work provides the gyroscopic effects theory, elaborating on their physics and utilizing
mathematical models of Euler’s form for the motion of non-fixed spinning objects.

Paper [42] investigates the question of monoaxial attitude control of a rigid body subject
to nonstationary perturbations. The control torque includes a dissipative and a restoring
component. The paper analyzes cases of linear and non-linear restoring of perturbation
torques. Article [43] explores a top’s global asymptotic stabilization to a constant rotation
about axes of symmetry. Paper [44] studies heavy Lagrange’s top’s motion with imbalance of
equatorial moments of inertia.

Results and diverse methodologies applied in the rigid body dynamics, as well as
investigation of the Lagrange top was studied in works [3, 5-10, 45]. A series of books and
papers are dedicated to dynamics of a rigid body in a resistant medium (see, for example,
works [5, 7, 8, 11-14, 17, 18, 21, 22]).

It becomes evident from the given analysis that there exists numerous papers on dynamics
of a rigid body under the action of perturbation torques of diverse physical nature. The
research in the given field is linked to problems of motion of gyroscopes, flying vehicles, as
well as other modern technology devices.

5 CONCLUSIONS

For all cases of motion considered in the paper, the authors present and analyze they basic
equations of motion. As a result of analysis of solution of the obtained equations, establish some
quantitave and qualitative features of the motions and provide a description of the evolution of the
body motion. The presentation is illustrated by some examples.
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