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ON THE OPTIMAL POSITION OF THE INTERMEDIATE
SUPPORT OF THE COMPRESSED THREE-SPAN ROD AND ITS
QUALITATIVE FEATURES
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Abstract: The optimization problem is considered, which consists in maximizing the main
critical force of a three-span longitudinally compressed rod supported at the ends on absolutely rigid
hinge supports due to the optimal choice of the position of one of the intermediate supports. It is
known that in many cases this position is a node of the buckling form, which corresponds to the
second critical force in the spectrum of the two-span rod formed by removing the moving support. A
range of recent studies have described cases where the maximum critical force is reached at other
positions. This, in particular, occurs at a finite stiffness of one or both end supports of the rod. The
proposed work seeks the optimal position of the rigid intermediate support, provided that the second
intermediate support has a finite stiffness and a fixed position. The compressive force is assumed to be
constant along the length of the rod, bending stiffness can vary according to the length of the rod
according to arbitrary way. It is established that under certain conditions the solution of this problem
can be reduced to the solution of another, previously studied problem, which seeks the maximum
critical force of a two-span rod by changing its length, at which some segment of the rod adds or
removes at one end of the rod with the transfer of the corresponding hinged support at the end of the
newly created rod. The paper founds and describes the characteristic qualitative features of the
buckling forms, which correspond to the maximum of the main critical force, in particular the absence
of deformation of the bending of the end span adjacent to the moving support. The limitations in
which the approach proposed in the paper leads to the determination of the desired optimal position of
the movable support are studied. The results are obtained mainly on the basis of the systematic use of
qualitative methods and allow to obtain qualitative estimates for the localization of the moving support
and the value of the corresponding critical force. An example illustrating the proposed approach and
the reliability of the results of its application are considered.

Keywords: compressed rod, critical force, optimization, buckling form, length effect, qualitative
sign.

PO ONTUMAJIBHE MOJIOXKEHHS MPOMIKHOI OITIOPU
CTUCHEHHOI'O TPUITPOJIITHOI'O CTEPKHSA TA HOI'O
AKICHI OCOBJINBOCTI

Bexmaes C. 5I.*
Y00ecvra deporcasna axademis 6ydisnuymea ma apximexmypu

AHoTamin: Y poOoTi po3risyiaeTbes 3ajada ONTHMI3allii, sika TMOJSATrae y MaKCUMAaIbHOMY
MiABUIEHHI OCHOBHOI KPUTHYHOI CHJIM TPUIPOJIITHOTO LIAPHIPHO ONMEPTOro MO KiHLAX Ha aOCOIOTHO
JKOPCTKI IIApHIPHI OMOPH TO3JIOBKHBO CTUCHEHOTO CTPIIKHS 332 PaxyHOK ONTHMAaJIbHOTO BHUOODY
MOJIOXKEHHSI OJHIET 3 MPOMDKHUX Omop. Bijomo, 1mo y 0ararbox BUMAIKaX TaKUM ITOJIOKEHHSIM €
By301 (popMHu BTpaTH CTIMKOCTi, IO BiJNOBiZa€ APYriidi 3a HOMEPOM KPUTWUYHIA CHJII B CHEKTpi
JBOIIPOTOHOBOTO CTPHIKHSA, YTBOPEHOT'O BUAAJICHHSIM OIOPH, L0 MEePEeMilIy€eThCsl. Y psilii JOCTIHKEHb
OCTaHHIX POKiB OyJIM ONMHMCaHi BUMAJKH, KOJIM MAKCUMYyM KPHTUYHOI CHIIM JOCSTAETHCS MPH HIIUX 11
nontokeHHsAX. Lle, 30kpemMa, Mae Miciie Ipy CKiHYEHi! MKOPCTKOCTI OfIHi€T a0 000X KIiHIIEBHX OTIOP
CTPWIKHS. Y 3allpoOnoOHOBaHiil poOOTI PO3LIYKYETHCS ONTHMAJIbHE IOJIOKEHHS JKOPCTKOI MPOMIXHOT
OIOpH 3a YMOBH, IO JIpyra HPOMDKHA OIopa Mae€ CKIHYEHY YKOPCTKICTh Ta (HIKCOBAHE IMOJIOKEHHS.
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Cruckaroya cujia repeadavaeThes MOCTIHHO 332 JOBKUHOK CTPHIKHS, 3TMHAIbHA KOPCTKICTh MOXKE
3MIHIOBATHCA 32 JJOBXKUHOIO CTPIXKHS 33 JOBUIBHUM 3aKOHOM. BCTaHOBIIEHO, IO TIPM MEBHUX yMOBAaX
PO3B'SI3aHHSI BOTO 3aBJaHHS MOXKE OyTH MPHBEACHO AO PO3B'I3aHHS 1HINOI, paHille JOCHTiIKEHOI
3ajadi, B SKild pO3IIYKYETbCS MAKCHMyM OCHOBHOI KPHUTHYHOI CHJIM JBOIIPOTOHOBOT'O CTPHIKHS 3a
paxyHOK 3MiHM MOTO [OBXHHH, TPH SAKIH Ha OJHOMY 3 KIHIIB CTPWXXHS TPHUETHYETHCS abo
BUAAJSETHCS JesAKa AUISHKA CTPIKHS 3 TIEPEHECCHHSM BiAMOBIAHOI IIApHIpHOI OMOpHU y KiHEUb
HOBOCTBOPEHOI'O CTPHXHs. B poOOTI BUSBIEHO 1 ommcaHO XapaKTepHi AKiCHI 0COOMUBOCTI (opMm
BTpaTH CTIHKOCTI, SIKi BIAIOBIJAlOTh MAaKCHMYMYy OCHOBHOI KPHUTHYHOI CHIIM, 30KpeMa BiJICyTHICTh
nedopmariii BUTHHY KpaifHbOTO IIPOJIBOTY, IO IMPHMHUKAE IO OTOPH, SIKa IepeMilryeTscs. Busdueno
OOMEXEHHS, Yy SKHX 3alpolOHOBaHUK y pPOOOTI MiAXil NPHU3BOAUTH 10 BU3HAYEHHS MIYKAHOTO
ONTHMAJILHOTO TOJIOKEHHS MepeMillyBaHoi onopH. Pe3ynapraTh OTpUMaHO B OCHOBHOMY Ha Ii/ICTaBi
CHUCTEMaTHIHOTO BHUKOPUCTAHHS SKICHUX METOMIB 1 JO3BOJISIOTH OTPUMATH SKICHI OIIHKH IS
JoKaji3amii omopw, W0 MepeMillyeThcs, 1 3HAUeHHA BiAMOBIAHOI KpUTH4HOI cwin. PosrmsHyTo
MPUKIIAJ, O LTI0CTPY€E TPOTMIOHOBAHUH MiJIXi[l Ta JOCTOBIPHICTh PE3YJIbTaTiB HOTO 3aCTOCYBAHHS.

Karo4oBi ci1oBa cTucHYTHH CTpHKEHb, KPUTUYHA CHJIA, ONITHMI3amis, ¢opMa BTpaTH CTIHKOCTI,
BILIMB JOBXXHWHH, HKiCHa O3HakKa.
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1 INTRODUCTION

Further abbreviations are used: CRF — critical force; BF — buckling form; 2nd BF — BF,
which corresponds to the second CRF by number in the spectrum of CRFs.

For reliable operation of many engineering structures containing compressed elements, it is
necessary to ensure their stability. In this regard, the task of finding ways to improve the stability of
such elements, both at the design stage and during the operation of the structure, acquires great
practical importance.

One of the ways to increase the stability of multi-span rods is to vary the position of their
intermediate supports in order to increase their CRF. At the same time, the optimal positions
of the movable supports, which provide the maximum of the main CRF of the rod, have some
qualitative features. In particular, for a number of simple cases it has been established [1, 2]
that the optimal position of the internal support is the node of the 2nd BF in the spectrum of
the rod formed by the removal of the movable support. However, it cannot be guaranteed that
this conclusion will be valid under various support conditions, just as it is impossible to
guarantee the existence of a node at the 2nd BF of the rod. These circumstances prompted
research, the results of which are presented in this paper.

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT

As recent studies [3 — 7] have shown, under certain conditions, in particular, with finite
stiffness of the extreme supports, the node of the 2nd BF, even if it exists, does not provide
the maximum CRF. Under these conditions, the search for the optimal position requires a
different approach and, in some cases, leads to the appearance of special semi-curved BFs
with rectilinear horizontal sections. The cases considered so far have been limited to rods with
absolutely rigid intermediate supports. At the same time, in practice, rods with elastic
intermediate supports can be encountered, the optimization of which has its own features, and
the study of these features is of great theoretical and practical interest. The results presented
below refer to the solution of some of the problems that arise in this case. This solution is
based on the use of qualitative methods.

3 THE PURPOSE AND OBJECTIVES OF THE STUDY

In this paper, the problem of determining the optimal position of an absolutely rigid intermediate
support is considered using the example of a three-span rod (Fig. 1a), in which one intermediate
support has a finite rigidity and a fixed position.
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a) b)

Fig. 1. The rod S to be optimized (a) and its components (b)

The ends of the rod are hinge supported on rigid supports. The distribution of bending stiffness
along the length of the rod is assumed to be arbitrary. The compressive force in all sections is the
same. We look for the optimal position of the rigid support. The optimal position is understood as such
a position of the support, in which the main CRF of the rod reaches its maximum value.

4 RESEARCH RESULTS

4.1. Preliminary results. The following notations are used:
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(MN) is a single-span rod, hinged at the ends M and N on absolutely rigid supports;
P(MN) is the main CRF of the rod (MN), A is the node of the 2nd BF of the rod (OL), A

and A, are the nodes of the 3rd BF of the rod (OL), numbered from left to right;

Further, the following results are systematically used.

4.1.1. The imposition of one constraint on a rod system containing compressed elements
cannot decrease any of its CRFs and cannot make the CRF higher than the next one by
number in the spectrum of the system before the constraint is imposed [1].

4.1.2. Let us agree to say that a constraint is established in a generalized BF node or that
a constraint is orthogonal to a BF, if the work of the reaction of the constraint on this BF is
equal to zero.

The number of CRFs, which are strictly less than some CRF, does not change as a result
of imposing a constraint, if this constraint is not orthogonal to at least one of the BFs
corresponding to this CRF.

In order to the multiplicity of the CRF not to decrease after the introduction of the
constraint, it is necessary and sufficient that this constraint be imposed in the generalized
node of each of the BFs corresponding to this CRF, which, therefore, will be the CRF of the
system formed after the constraint has been set. In particular, for a simple CRF to be
preserved in the spectrum after a constraint is set, it is necessary and sufficient that the
constraint is superimposed in the generalized node of the corresponding BF [1].

4.1.3. The reaction R of the intermediate hinged support is considered positive when it is
directed upwards. The slope angle © of the rod cross section is positive if it is turned clockwise. Then,
for a sufficiently small displacement of the support to the right, the simple CRF increases if RO >0,
and decreases if RO < 0. If, at a certain position of the support, the CRF reaches an extremum, in this
position RO =0 [8].

4.1.4. The CRF of a two-span rod OD with an elastic intermediate support (Fig. 1 b on the left)
changes with a change in the length of the segment with the transfer of the extreme hinged support to
the end of the elongated or shortened rod. In [9], the existence of such a value c, of the stiffness

coefficient of the intermediate support was established that at ¢ > C_, the main CRF of the rod reaches

a maximum at a certain length |CD|; this maximum is greater than P(OC).
~ D b D
4 5 e B

type 1 type 2 type 3

Fig. 2. Typical configurations of the BF of the rod at the end adjacent to the hinged support

The behavior of the main CRF of the rod OD with a change in its length is determined by the
configuration of the end segment of the corresponding BF, adjacent to the movable support (Fig. 2),
and this CRF with increasing length decreases for type 1 BF, increases for type 2 BF, and reaches a

maximum for BF of the 3rd type, which has a zero slope of the end cross section. The value C, is
equal to the stiffness coefficient of the elastic support, which provides the maximum increase in the
main CRF of the two-span rod OD (Fig. 1b on the left), provided that C is the node of the 2nd BF of
the rod (OD). It is defined by the equalities

_ A S
P(OC) = P(CD) = cc,/(IOCI + |CD|). (1)
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In particular, for a rod with the bending stiffness EJ constant along the length
¢, =2n°EJ / |OC|3. Generalizations of the results of [9] concerning the relationship between

the CRFs and the length of the rod are presented in [10].
4.1.5. The main BF of a two-span rod, hinged with its ends on rigid supports, with an elastic
intermediate support, has no nodes inside the segment containing a node of the 2nd BF of the rod,

devoid of an intermediate support (Fig. 3) [11].
A
° ———————
N %

Fig. 3. Characteristic configurations of the main BF of a two-span rod. A — node of the 2nd BF of a single-
span hinged rod, C, <C,

4.2. Determination of the optimal position of the support D. Mentally position
ourselves so that the elastic support C (see Fig. 1 a) is to the left of the node A of the 2nd BF
of the rod (OL), and when searching for the optimal position of the support D, we restrict

ourselves to the right segment CL, since it is less stable (P(OC) > P(CL)).

4.2.1. Approach idea. The idea of finding the optimal position of the support D uses the mental
division of the optimized rod into two parts (Fig. 1b). As noted in Sec. 4.1.4, at sufficiently high
values of the stiffness coefficient C of the elastic support, the CRF of the left segment OD reaches its

maximum value at a certain position D* of the support D and, accordingly, at a certain length of the
segment OD . If the cut D is located to the left of D", the CRF of the segment OD is less than its
maximum. By moving the cut to the right, we will increase the CRFs of both the segments OD (until
it reaches the maximum) and the right rod (DL), and it is natural to assume that the CRF of the rod

S will also increase. When the moved cut is in the position D* that ensures the maximum CRF of the
segment OD, the BF of this segment will belong to the 3rd type (see Sec. 4.1.4, Fig. 2), and its
smooth conjugation with the undeformed segment DL forms a semi-curved BF of the optimized rod
S, since “splicing” segments OD" and D"L is a superimposition of a constraint orthogonal to the
corresponding BF of a split rod (Sec. 4.1.2). As follows from Sec. 4.1.3, the corresponding position of
the support D satisfies the necessary condition for the extremum of the CRF of the rod S . Further,
some sufficient conditions are established under which this position ensures the maximum of the main
CRF of the rod S . In what follows, we will call the point D a conjugation point or a singular point
of a semicurved BF.

4.2.2. Theorem. If at ¢>c, the main CRF corresponds to a semi-curved BF, then the

optimal position of the support is the conjugation point of this BF.
The existence of a semi-curved BF for ¢ >c_ follows from what was said in Sec. 4.2.1.

Therefore, to prove the theorem, it suffices to prove that this BF corresponds to the maximum
of CRF, if it is also the main one.

If the considered main CRF is a multiple, then (regardless of the configuration of BFs
corresponding to it) the movement of the support can be carried out by first removing the
support, thereby reducing the main CRF and not changing the 2nd CRF (Sec. 4.1.1), and then
installing it in a new place, after whereby the main CRF becomes no higher than the initial
multiple CRF, i.e. that this initial CRF is the maximum, which was to be proved.

Next, we consider the case when the considered CRF is simple.

First, let us prove that the installation of a movable support at the conjugation point of
the BF provides a local maximum of CRF.
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Let D* be a singular point of a semicurved BF. Moving the support to the right of D*
can be done in two steps. On the first, keeping the support in position D", an additional
support is placed on the right in a straight segment. This support does not distort the
semicurved BF and does not change the corresponding main CRF of the rod S . At the second
step, the support that was in D" is removed, which leads to a decrease in the CRF. Thus, it
has been established that when the support is displaced to the right of D*, CRF decreases.

With a small displacement of the support to the left, we consider two cases: the first case
is that the CRF of the rod (D'L) is less than or equal to the CRF of the entire rod S, the

second is that the CRF of the rod (D*L) is greater than the CRF of therod S .

In the first case, with a small displacement of the support D from the position D*, a rod
is formed, cutting which on the support D, we get two rods — OD and (DL), each of which
has CRF less than the CRF of the original rod. By imposing a constraint that eliminates the
cut, it is impossible to increase the main CRF above the second one in the spectrum (Sec.
4.1.1), whence it follows that as a result of the displacement, the CRF decreased.

In the second case, we note that the spectra and BFs of the rod S and the two-span rod
OD (Fig. 1b on the left) continuously depend on the position of the support D . The same
conclusion is also valid for the rod S formed from S by setting a rigid clamping, combined
with the support D . Then there is such a neighborhood of the point D* that when moving the
support D to any of its points to the left of D

a) the main CRFs of rods S and S remain simple,

b) the main CRF of a two-span rod OD decreases when the support D moves to the left
and it corresponds to a BF of the 2nd type,

c) CRF of rod (DL) remains greater than CRF of the rod S and the reaction of the

displaced support at buckling of the rod S along the main BF remains directed downward,
i.e. in the direction of the transverse displacement of the cross section C.

Let us consider a two-span rod OD (Fig. 1b on the left), introduce elastic clamping in its
cross section D, and watch the change in its main CRF and the BF corresponding to it with a
continuous increase in the clamping stiffness. The following statements are true.

I. At no finite value of the clamping stiffness, the slope of the cross section D of the
main BF vanishes. Otherwise, the rod OD, in the absence of clamping, would have a main
BF of the 3rd type, which contradicts statement b) above.

I1. At no value of the clamping stiffness, the deflection in the cross section C of the main
BF of the rod OD vanishes. Otherwise, with some clamping stiffness, the main BF of the
single-span rod OD, formed by removing the elastic support C, would have a node at C,
which would imply the existence of two internal inflection points of the main BF of this rod.
This would mean that its main CRF is higher than the 2nd CRF of the rod (OD). At the same

time (Sec. 4.1.1), one constraint in the form of clamping introduced in the cross section D of
the rod (OD) cannot raise the main CRF above the 2nd CRF of the rod (OD).

II1. For any finite clamping stiffness in the cross section D, the slope of this section in
the main BF of the rod OD has the same direction as the rectilinear segment CD. This
follows from the fact that at zero clamping stiffness in the main BF (type 2) of the rod OD,
these directions coincide, and with a continuous increase in clamping stiffness, this
coincidence is preserved, because otherwise, one of statements I or 11 would not hold.

In consist of the rod s, the fragment OD can be considered as a rod elastically clamped
on the support D, since joining the segment DL, provided that CRF of (DL) > CRF of S,
at buckling is equivalent to the introduction of elastic clamping in the section D.

Statements I - I1I lead to the conclusion that with a small moving of the support D to the left of
D", the main BF of the rod S can be schematically represented in the form of Fig. 4, where the
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arrows indicate the directions of the reactions of the supports. As can be seen from the figure,
condition RO > O is satisfied in the section D of the rod, which, in accordance with Sec. 4.1.3, means
that the main CRF of the rod S decreases when the support D moves to the left.

L P
w Aj
R

Fig. 4. BF of the rod S with a small displacement of the support D to the left from D*

Thus, the main CRF of the rod S decreases when the support D is moved both to the
right and to the left from the position D", which implies that when the support D is placed in

the position D, the main CRF has a local maximum (which does not exclude the possibility
of other local extrema, among which may be the desired absolute maximum of the CRF).
Let P(D) be the main CRF of the rod S corresponding to the position of the support in

D. If, for some position D to the left of D", the inequality P(D)>P(D") was satisfied,

between D and D" there would be a position D" providing the minimum CRF, for which,
according to Sec. 4.1.3, one of the equalities 6=0 or R=0 would hold. The first is
impossible due to the following circumstances.

If, for 6=0, the corresponding main BF was deformed on both sides of the support D’,
the installation of a rigid clamping on this support would preserve P(D’) in the spectrum
(Sec. 4.1.2), but would make it double, because it would correspond to two linearly
independent forms having a horizontal segment on one side of the support. This would mean
the existence in the spectrum before the introduction of a rigid clamping CRF smaller than
P(D"), i.e. P(D") would not be the main one.

If the value P(D’) corresponded to a semi-curved BF, the part of the rod either to the left
or to the right of D’ would remain horizontal. If the left segment is not deformed, the right
part (D'L) must have a zero slope of BF in the cross section D', which is impossible, since
the BFs of a hinged single-span rod (D’L) are solutions of a 2nd order linear differential
equation [12], for which the only solution vanishing at the boundary together with the first
derivative, is the identical zero.

If the right section is not deformed, the inequality P(D’) > P(D") must be satisfied,
because the corresponding BF is the BF of a rod formed from the S by imposition of
constraints that prevent deformation of the section D'L (Sec. 4.1.1, 4.1.2). This inequality
contradicts the assumption that P(D’) is minimum.

Equality R=0 means that D’ is the node of the corresponding BF, which, taking into
account the minimality of P(D’), should be the main one for the rod formed from S by
removing the support D. But according to Sec. 4.1.5 (see Fig. 3), the main BF of such a rod
does not have nodes in the segment CL.

Thus, the assumption that there is a position to the left of D that ensures the minimum
of the main CRF of the rod S leads to a contradiction, from which it follows that as the
support D moves continuously to the left from D* to C, the CRF P(D) monotonically

decreases and, therefore, cannot exceed P(D").
For any position D to the right of D", the inequality P(D) > P(D") is satisfied due to
the same circumstances as the inequality P(D') > P(D") above. Thus, for all positions of the
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support D, both to the right and to the left of D", the relation P(D*) > P(D) is satisfied,
from which the validity of the theorem follows.

Remark. The requirement to locate the support C to the left of the node A is essential.
Otherwise, it can be proved that the semi-curved BF described in Sec. 4.2.1, which can exist
at a sufficiently high stiffness ¢ and for P(OC) < P(CL), provides a local maximum of main

CRF, which may not be absolute.
4.2.3. Limitations. The proved theorem describes the sought-for optimal position only
under the condition that the considered CRF is the main one. This condition is satisfied, in

particular, if the length of the rod S is such that the segment DL is more stable than OD",
P(D'L) > P(D"), because in this case, the loss of stability occurs due to the buckling of the

segment OD". Elongation or shortening of the rod S due to the segment DL does not affect
the value of its CRF, equal to P(D"), determined by the buckling of the curved segment OD"
lim ' P(D)
remains in the spectrum of the CRFs of the rod S, but becomes not the main one, but one of
the senior ones. For example, if the length of the rod S is such that the node A of the 3rd BF
of the rod (OL) is located to the right of the elastic support C, at any position of the support
D, the CRF of the rod S will be less than the 3rd CRF of the rod (OL) (because the
supports C and D do not fall into the nodes A and A, of its 3rd BF, (see Sec. 4.1.2) equal
to the CRF of the rod (OA). In this case, the CRF P(D") of the rod S corresponding to the

semi-curved BF described in Sec. 4.2.1 will be present in the spectrum of CRFs of therod S,
but will not be the main one, because according to Sec. 4.1.4 P(D")> CRF (OC) > CRF

(OA).

4.2.4. Limit length. The following considerations can be used to determine ‘D*L

of the semi-curved BF, however, if ‘D*L

exceeds a certain limit value ‘D*L

. Let

lim
P(D") be a simple main CRF of the rod S . If you increase its length by moving the support
L, you will find its position when its 2nd CRF, decreasing, becomes equal to P(D"), which,

thus, will become double and, with a further increase in the length of the rod S, will become
the second in its spectrum (due to a change in number). This position marks the limit length

‘D*L . Then, from two linearly independent BFs of the rod S corresponding to P(D"), one

lim
can form a BF having a node at D* or at C. This BF will belong to the spectrum of the rod
formed from the S by removal of the support D . As a result of the removal of the constraint,
the main CRF will become smaller and P(D") will be the second in the spectrum of the two-
span rod (without support D), which corresponds to the BF with the node in D*. Zero
deflection in the section D of the 2nd BF of a two-span rod, compressed by force P(D"),

can serve as a condition for determining the limiting length. Instead D", you can take the
cross section C, but in a different rod, removing the support C and keeping the support D .
4.2.5. Example. The results of the work are illustrated by a numerical example in which the rod

S (Fig. 5 a) has a constant bending stiffness along its length, EJ =const., c, :27:2EJ/€3,

c=2c,.
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Fig. 5. Optimal prismatic rod S (a) and its main semi-curved BF (b)

As a result of the analysis of the exact equation of CRFs, got on the basis of exact expressions for
the influence functions of a compressed prismatic rod [12], the optimal position of the support D was
found at a distance 1,701-( from the left end of the rod. The corresponding value of CRF is

P.x =1181-P., where P, :nZEJ/ﬁz, and the BF corresponding to it, normalized so that the
reaction of the elastic support is equal to 1, calculated on the basis of the same expressions, is shown
in Fig. 5 b; ordinates are given in ratio to 63/7c3EJ , abscissas - in ratio to (. This form retains its

configuration and remains the main one until the distance |DL| exceeds the limit value

|DL|Iim =1,036- ¢ calculated from the considerations given in Sec. 4.2.4.

5 RESEARCH RESULTS DISCUSSION

The results of the work reveal some little-known aspects of the operation of
longitudinally compressed rods. On their basis, answers can be obtained to a number of
questions that arise during the operation and design of structures containing compressed
elements. In particular, the presence of undeformed zones in the case of buckling of optimal
rods gives the designer important and useful information, since in some cases it makes it
possible to achieve savings due to these zones. If it is necessary to strengthen the structure, it
also makes no sense to establish any constraints in these zones, since, as follows from the
results of the work, these constraints will not be able to increase its critical force.

6 CONCLUSIONS

The problem of determining the position of an intermediate hinged support of a three-
span rod, which ensures the maximum value of its main critical force, is considered, provided
that the second intermediate support has a fixed position and finite stiffness. It is shown that
the solution of the formulated problem depends on the stiffness and position of the
intermediate elastic support, on the length of the rod, and also on the value and distribution of
the bending stiffness, and qualitatively different solutions correspond to different
combinations of these parameters. The conditions that must be satisfied by the stiffness and
position of the elastic support are specified, under which the buckling of the optimal rod
occurs in a semi-curved form, in which the segment of the rod on one side of the movable
support remains undeformed. The results obtained allow us to better understand the behavior
of compressed rods and can be used in the design and operation of engineering structures
containing compressed elements.

The subject of further research should be a more complete and accurate determination of
combinations of rod characteristics that provide qualitatively different solutions and the
extension of conclusions to multi-span rods and more complex bar systems.
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