1V, Ne2, 2022
Crop. 53-64/ Page 53-64

MexaHika Ta maremMaTudHi meromu [/
Mechanics and mathematical methods

UDC 624.154.3

STUDY OF A CONCRETE COLUMN FOR STABILITY UNDER
ASYMMETRIC CORROSION

V. Fomin®, I. Fomina®
'Odessa State Academy of Civil Engineering and Architecture

Abstract. Reinforced concrete became widespread due to its many positive properties: durability,
fire re-sistance, resistance to corrosive effects, high resistance to static and dynamic loads, low
operating costs for maintaining buildings and structures, and relative cheapness of manufacturing. The
presence of widespread large and small aggregate used in the production of reinforced concrete makes
it applicable in all corners of the globe and even beyond its borders.The emergence and development
of building structures, including reinforced concrete, is inextricably linked to the conditions of the
material life of society, the development of productive forces. The appearance of reinforced concrete
coincides with the period of accelerated development of industry, transport and trade in the second
half of the 19th century. The period of emergence of reinforced concrete (1850-1885) is characterized
by the appearance of the first structures made of reinforced concrete in France (Lam-bo, 1850;
Quanier, 1854; gardener Monier, 1867-1880), England (Wilkinson, 1854), the USA (Hiatt, 1855-
1877).

Buildings and structures and their structures during operation experience force and non-force
effects of the environment. With a symmetrical effect of the medium, centrally compressed rods
remain centrally compressed, and with an extracenteral one, extracentric eccentricity appears. First,
the rod experiences off-center compression. Further deformation will lead the rod to longitudinal
bending, and under the action of a transverse load to longitudinal-transverse bending.

In steel structures, the environment causes corrosion, in concrete — corrosion and neutralization.
In a physically linear formulation, these problems are solved, but it is necessary to take into account
the real diagrams of steel and concrete, and to solve problems according to an unformed deformed
scheme. Given the impact of the environment, new challenges arise with constructive and induced
heterogeneity. Noncentrally compressed elements are part of statically definable and indeterminate
structures: these are beams, threehinge systems, frames and trusses.

This is a new topic, a new formulation of the question, tasks that require the development of new
methods.

Keywords: spatial stability, longitudinal force and torque, impact of an aggressive environment,
corrosion.

TOCALKEHHSI BETOHHOT KOJIOHU HA CTIAKICTH ITPU
HECUMETPUYHOMY BILIMBY KOPO3Ii

®omin B. M.}, ®omina L. 1.}

1 o .
Ooecvra depoicagrna akademis OyisHUYMEA Ma apXimexmypu

AHoTanisi. Po3noBciompkeHHs 3a1i300€TOH OJlepXaB YHACHiIOK 0araTboX HOro MO3UTHBHUX
BJIACTUBOCTEW: JIOBrOBIYHOCTI, BOTHECTiHKOCTI, OMOpPY KOPO3IMHUM BIUIMBAaM, BHUCOKOMY OIOpPY
CTaTUYHUM 1 TMHAMIYHAM HaBaHTAXKEHHIM, MAJIMX €KCIUTyaTallIfHUX BUTPAT HAa yTPUMaHHS OyJIUHKIB
1 copyzl, BiIHOCHO{ JeIIeBU3HN BUTOTOBJIEHHs. HasiBHICTH pO3MOBCIOAKEHOI0 BEIUKOTO 1 ApiOHOrO
3al0BHIOBaYA, 110 i/le Ha BUTOTOBJIECHHS 3a1i300€TOHY, pOOUTH HOro 3aCTOCOBHUM Y BCiX KyTOYKax
3eMHOI KyJIi 1 HaBiTh 32 ii MexkaMu. BUHUKHEHHS 1 PO3BUTOK OYIiBEITbHUX KOHCTPYKIIIH, Y TOMY YHCII
3aJ11300€TOHHUX, HEPO3PUBHO TIOB’SI3aHO 3 YMOBAMH MaTepialIbHOTO KHUTTS CYCIIJIbCTBA, PO3BUTKOM
nponykTuBHuUX cui. [losBa 3ami300eToHy 30ira€erbcs 3 MEpiogoOM IPHCKOPEHOIO PO3BHUTKY
MPOMHCIIOBOCTI, TpPaHCIOPTY ¥ TopriBimi B japyrii nonoBuHi XIX cr. Ilepiog BUHHKHEHHS
3amizo0erony (1850-1885 pp.) XapakTepu3yeThCs IOSBOIO MMEPIIMX KOHCTPYKIIH 3 apMOBaHOTO
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oerony y ®panmii (Jlam6o, 1850 p.; Kyanwse, 1854; camiBauk Monbe, 1867-1880 pp.), Anrmii
(Yinkincon, 1854 p.), CIIIA (Tiarr, 1855-1877 pp.).

ByniBni Ta ciopyau Ta iX KOHCTpYKUii B MepioJ eKcIulyaralii BiI4yBalOTh CHJIOBI Ta HE CHIIOBI
BIUTMBU HaBKOJHMIIHBOTO cepeaoBuia. [Ipu cuMeTpuuyHOMY BIUIMBI CepeJOBUINA LCHTPAIbHO CTUCII
CTPWIXKHI ~ 3QJIMINAIOTHCS  IICHTPAJbHO CTUCHYTUMH, a TPH MO3aIlCHTPOBOMY 3’ SBISETHCS
Mo3aneHTpoBUi ekcueHTpucuTeT. CrodaTKy CTPIKEHb BiAdyBae Mo3ameHTpoBe cTucK. [lomambrna
nedopMartisi IpuBeie CTPIKEHb 10 MO3/A0BKHBOIO BUTHHY, a TIPH Aii MONEePeYHOr0 HaBaHTAKEHHS 10
MO3/I0BXKHBO-TIONIEPEYHOTO BUTHHY.

VY crameBUX KOHCTPYKIIISIX CEPENOBHUINE BUKIUKAE KOPO3il0, y OETOHHHX — KOpO3if0 Ta
HelTpanizarito.

VY ¢iznyHO NMiHIWHIA MOCTAaHOBII IIi 3aBIAaHHS BHpINICHI, ajle HEOOXIAHO BpaxyBaTH peasibHi
Iiarpamu ctaii Ta OeTOHY, 1 BHUpINIYBaTH 3aBJIaHHS 32 HE(OPMOBAHOIO 1e(hOPMOBAHOIO CXEMOIO. 3
ypaxyBaHHSIM BIUTUBY CEpEAOBHUINA BHHHMKAIOTH HOBI 3aBJaHHS 3 KOHCTPYKTHBHOIO 1 HaBEIEHOIO
HEOJHOpiAHICcTIO. HeleHTpeHHO CcTHCHi eneMeHTH BXOJATh A0 CKJIaay CTaTHYHO BHM3HAYHUX 1
HEBM3HAYCHUX KOHCTPYKIIiH: 1e Oaiku, TpumapHipHi cucremu, pamu Ta (epmu. s HAX TOTpiOHO
PO3pOOIIATH METOAMKY PO3PAXyHKY.

Ile HOBa TeMa, HOBa IOCTAaHOBKA MHWTAaHHS, 3aBAaHHS, IO MOTPEOYIOTH PO3POOKH HOBHX
METOJIHK.

Ku1040Bi cj10Ba: mpocTopoBa CTIHKICTh, MO3M0BXKHS CHJIA, EKCIIEHTPHCUTET, BIUTHB arpPECUBHOTO
CEepeIOBHIIA, KOPO3isl.
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1 INTRODUCTION

In the process of operation, buildings and structures are affected by the external
environment for a long time and, as an example, corrosion. This greatly complicates the
durability and functionality of objects.

2 ANALYSIS OF LITERARY DATA AND PROBLEM STATEMENT

When studying the spatial stability of frames, it is necessary to take into account not only
the effect of compressive longitudinal forces on structural elements, but also torques. The
problems of loss of stability of rods under the action of torques, as well as under the joint
action of longitudinal forces and torques, were considered earlier, but cases of constant length
cross-sections, i.e. constant bending stiffnesses, were considered. A similar problem for a rod
of constant cross-section is considered in the [1-13]. Analysis of recent studies or
publications. The need to consider the cases of variable cross-sections when taking into
account the impact of an aggressive environment on reinforced concrete structures is
explained by the fact that the depth of the damaged zone depends on the abscissa X cross-
section of the rod [2,3]

h(X,t) = hoe*ﬁvo/[lo(t)fx] 1 (1)

In here 1,(t) =v,t — corroded length (t — column operating time in years). Parameter
values h,, # and v, depend on the type and intensity of the aggressive environment [3].

When calculating non-centrally compressed concrete elements, it is necessary to take into
account the random eccentricity of the longitudinal force due to factors not taken into account
in the calculation, including the heterogeneity of the properties of concrete in cross-section.
For elements of statically indeterminate structures (for example, pinched at the ends of walls
or pillars), the value of the eccentricity of the longitudinal force relative to the center of
gravity of the reduced section is taken to be equal to the eccentricity value obtained from the
static calculation of the structure. In the elements of statically determined structures,
eccentricity is found as the sum of eccentricities—determined from a static calculation of a
structure and a random one. The main purpose of these restrictions is to prevent the use of
elements whose bearing capacity would be provided only by stretched concrete, since with
any accidental crack, the balance of forces in the cross-section is disturbed. An exception can
be made in some cases for structures working on compression with higher values of
eccentricities (as well as for bendable structures), when their destruction does not pose an
immediate danger to human life and the safety of equipment (for example, elements lying on
a solid base, etc.). The main one for non-centrally compressed concrete elements is the
calculation of the strength of the compressed zone without taking into account the resistance
of concrete to the stretched zone The resistance of concrete to compression is represented by
stresses equal to Ph, evenly distributed over the part of the actual compressed zone, which is
conventionally called "compressed" [4].

3 PURPOSE AND OBJECTIVES OF THE RESEARCH

The purpose of the study is to determine the stability conditions of a reinforced concrete
rod (column) of variable cross-section under the action of compressive longitudinal force. To
achieve this goal, you need to solve the following tasks: First, it is necessary to divide the
corroded part of the column into a series of sections with a cross-section constant in length.
Thus, the column appears to be a system of sections with a cross-section constant in length of
each section, rigidly connected to each other. Secondly, it is necessary to determine at each
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site additional bending moments caused by the action of torque. Next, it is necessary to
determine the given moments of inertia of the cross-section with respect to the main central
axes of the cross-section and to draw up differential equations of spatial bending for each
section of the column. The solution of each of these equations is a linear combination of
trigonometric functions.

4 RESEARCH RESULTS

As an example of stability research, consider a concrete column of rectangular cross-
section, rigidly pinched in the ground. The colon will be exposed to asymmetrical corrosion.
The lower section of the side face of the column will be subjected to corrosion (Fig. 1). The
cross-section in the lower section is shown in Fig. 2, where C is the center of intact cross-
section, C1 is the center of the intact part of the corroded section). The upper edge of the
corrosion zone will move upwards at a constant rate vO0.
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Fig. 1. Column under the influence of corrosion Fig. 2. Column cross-section

The depth of the damaged area is determined by the formula:
h(t) =he ™. (1)

Here t, is the time counted from the moment t, of the beginning of the corrosion process
in a given cross-section of the rod. Obviously

t,=—. 2

Taking into account (2), the formula (1) takes the following form:
h(x,t) = hyg #/~") | ©)

(x — abscissa cross-section). Here t is the time counted from the beginning of the corrosion
process in the column. Since the length |, of the first (corroded) section of the column is

L (t) =Vt
then formula (3) can be written as:
h(x,t) = hoe—ﬁ"/o/[ll(t)_x] . )
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Fig. 3. Location of transverse force centers

In Fig. 3, the dashed line shows the axis on which the centers of the cross-sections of the
intact part of the column are located. A solid line shows the deformed position of this axis.
Through y1 are the ordinates of the movements of the axis points in the first (lower) section,
and yy is equal to the distance of CC; in each section, i.e.

_h(x,t)
—
The resulting stress-strain state of the column can be considered as a longitudinal bend of

the rod with the initial curvature of the axis. Following [2] we make a differential equation for
the first section:

()

0

EJ, “(';yl =PLy, (L)~ ¥, ~ o] (0<x<1,). (6)

X2
The moment of inertia of the cross-section J is determined by the formula:
d,[d, —h(x,y)F

12 ’

(d1 and d; are the width and height of the cross-section at t = 0). Note that time t plays the role
of a parameter in equation (6). For the second (upper) section of the column, we have the
following differential equation:

J,(xt) = (7

d2
EJ, dxy; =Ply, (1,0 -Y,] (L <x<I), ®)
where is J, =d,d} /12.

Note that the values of the critical forces are determined from the condition for the
existence of a non-zero solution in a system consisting of the equation:

d2
£, =PIl -] 0<x<l) (©)
and equations (8) under the following conditions:

y,(0,t) =0, %(O,t) =0, y,(I,,t) = y,(l,, 1), %(Il,t) = %(Il,t) . (10)
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Let’s replace the independent variable in equation (9) & =x/I (I — column height). As a
result, we get the following equation:

32—;;1+gf(§,t)y1:gf(§,t)D, (11)
where is
Pl2 12
f(&t)= =, D=y,(L1),
E, d,[d, —h(&,1)] . (12)

h(&,t) = he ?"Ma0=1 " 3 (1) = I (t)

Let’s approximate the function f(é, t) per segment 0 < & < 1;(t) polynomial using The
Lagrange interpolation formula [3]:

f(£ 1 Fe .02
(&.1)= Z (&.1) () 13)

0,(8) = (6 =& = &) (=G )(E = Gp)- (S = &),

(; :%i, i:O,l,...,nj.

Imagine @ (&) (i=0,1,...,n) as follows:
AGEDY IS (14)

where is b; (i,j=0,1..,n) — constant coefficients, unambiguously expressed through
& (i=041,...,n).
Substituting the representation (14) into formula (13), we get:

fEN=2 1,08, (15)
where is :

n bij . ]
fj(t)=Zf(§i,t)? (j=0,1..n), f,()=0(j>n).

We will look for a solution y;(&, t) Cauchy’s problems for equation (11) under initial
conditions:

dy; (0.t)
0,t)=0, —+——"-~2=0 16
y,(0,1) 0 (16)
in the form of decomposition by degrees of a small parameter &:
y1(§’t) :ngyl,k (f,t) (17)
k=0

and assume that the conditions (16) are met for each of the functions vy, (&,t) (k=0,12,...).
Substituting this decomposition into equation (11), we obtain:
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d* y 2 4y
— > ”+f(§ DYl = (£ )D. (18)
k=1
Equatlng the coefficients at degrees ¢ zero, we get a system of differential equations:
d’y d?y.
délzo = 01 ;1 = Df (gvt) - f (g!t)yl,O’
aty (19)
?ﬁk =-f (&)Y, (k>D).
From the first equation (19), taking into account the conditions (16), we get:
Yio (f,t) =0. (20)
With k = 1, equation (19) given (20) looks like this:
d?
i pr (). (21)
Substituting here (15) and integrating ¢ twice, we find:
y1,1(681t) = Dz fj(l)éj ' (22)
j=0
where is

f
f=1f®=0 f®=—22_ (2<j<n+2), {? =0 (j>n+2).

(J-Dij
At k = 2, using the decompositions (15) and (22), we get:
d2y1,2 . C j S ) gi
—L2-_DY 1Y 08 (23)
d& =0 i—0

Multiplying the power series standing in the right part (23) and integrating & twice taking
into account the conditions (16), we come to the following expression:

Y12 &t)= Dz fj(Z)éj ' (24)
j=0
where is
fo” = % =0, —(J Y > 10, (i22).

Note that a fairly rapid decrease in coefficients f j‘z) with an increase in j and the need to

calculate the sum of the series when & < 1 in the first section, it is possible to limit the
calculation of a small number of coefficients of the series (24). We do exactly the same thing
when k > 2. As a result, we obtain recurrence ratios:

j-2

O R (e2i22)
m:O

for decomposition coefficients:

£00 = £00 =0, f
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V(& =DY. 1967 (k=2.3..). (25)

In view of the considerable smallness of the ¢ for practical tasks, it is possible to limit
oneself to a small number of members in the decomposition (17). Thus, it can be considered
that the private solutiony, (&, &,t) Cauchy’s problem for equation (11) given conditions (16)

is constructed. It follows from (22), (24) and (25) that it can be presented in the following
form:

Y1(&,t)=DZ,(S,1), (26)

where is:
Z,(&0) = izlyk(f,t)gk, Zl,k(é:!t) = i fj(k)é:j .

Let’s move on to the second (not subject to corrosion) section. Differential equation (9)
after substitution &= x/1 will look like this:

2

d§22+k22y2:k22D1 (27)

where is:

/P d.d3
k=l |[—, J, =2 D=y (1).
2 £, T 12 Y, (@)

General solution of this equation:
Yy, (&,t) =C, cosk,& +C,sink,&+D, (28)

(Cy and C; are arbitrary constants that depend on the parameters t and P. To find these
constants, we use the third and fourth conditions (10):

Y2(4(1),1) =y, (4(0), &), ¥, (40, 0) = ¥, (4 (1), 1), (29)
(the stroke denotes the derivative of & 43(t) = 11(t)/1).

From (29) we get a system of equations:

C, cosk, 4, (t) +C, sink, 4 (t) = D[Z, (4 (t),t) -1,

k,[-C,sin, 4 (t) +C, cosk, 4, (t)] = DZ, (4, (t).1),
solving which we find:

D D
C=— 1), C,=—HkK,(P,1),
1= F(P,t) ” F,(P,t)

2 2

(30)

where is:

F(P,t) = [Z,(4 (1), t) ~ 1k, cosk, 4, (t) = Z, (4 (1), t) sin k, 4, (1),
F, (P, 1) =[Z,(4(1),1) ~ 1]k, sink, 4, (t) + Z, (4, (1), t) cos k, 4, (1).

Substituting the resulting expressions in (28), we will have:

(31)

Y, (&1)= kR[Fl(P,t) cosk,& + Fy (P t)sink,&]. (32)

2
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Recall that:
D=y,(Lt). (33)
Substituting here (32), we will have:
D[R (P,t)cosk, + F,(P,t)sink, 1] =0
and since D # 0, that:
F (P,t)cosk, +F,(P,t)sink, -1=0. (34)

This is the equation of critical forces.
Proceed to the determination of the deflections of the column under the action of the
longitudinal force P. Let’s make a substitution in equation (6) £ =x/I. As a result, we get the

following equation:
Z—;;wf(é,t)yl:sm (ED-9(E). (35)
In here g(&,t)=6h(&,t)/d,[d, —h(&, ). Like the function f(&, t), approximate the

function g(&,t) per segment 0 < & < 44(t) an interpolated Legendre polynomial. As a result, we
get:

g(f,t)=igj(t)<§", (36)
where is:
n bij . ]
9,(t)=>9(&.t)— (i=01..,n), g;,(t)=0 (j>n).
i=0 (&)

As above, we will look for a solution to yl,h(f,t) of the Cauchy problem for equation

(35) under initial conditions (16) in the form of a decomposition by degrees of a small
parameter é:

oo 6D =X e Vs (D). @)

Acting similarly to the above, we obtain:

Yipo(E0)=0, ¥, (&,1)=DZM (&) + 2 (&1),

o _ 38

ZPED =Y 9P Me, (38)

j=0

where is:

00 =g =0, g =12 (2<j<n+2), g =0 (j>n+2)

(J-Dij
1 & .
) =gk =0, g™ =- ff& k>2,j>2).

gO gl gj (J—l)] % m " j-m-2 ( J )

The desired decision can be written in the following form:

Y1.p(6:1) =DZ,(5,1) +Z,(S 1), (39)
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where is:
Z,ED =3 870D,

Let’s move on to the second section. As above, to find the constants C; and C; in (28),
we use the conditions (29). As a result, we get a system of equations:

C,cosk, (1) +C, sink, 4, (1) = v, , (4 (t).) - D,

-G, sin, A,(0)+C, cosk, A 0= ¥y, (h0).), “0)
stroke means derivative on &, solving which we find:
1 1
Cl = k_2 F3(P,t), Cz = k_2 F4(P,t) )
where is:
Fy(P.t) =Ly, , (4 (1), 1) - DIk, cosk, 4, (t) -y, , (4 (1), ) sink, 4, (1), 1)

Fy(P,1) = [y, , (4 (1), 1) = DIk, sink, 4, (t) + ¥, , (4, (1), t) cos k, 4, (1).

Substituting the resulting expressions in (28), we will have:

y,(&,1) =ki[F3(P,t) cosk,& + F,(P,t)sink,&]+D.

We now use equality (33), from which we obtain using (39) and (41):

_ Z,(A(0), )k, cosk,4, (1) + Z, (A (1), 1) sink, 4, (1) @2)
[Z, (A4, (t),1) 1]k, cosk, 4, (1) + Z, ‘(A (1), t) sin k4, (1)

5 DISCUSSION OF RESEARCH RESULTS

When designing and operating buildings and structures, it is necessary to take into
account the emerging eccentricity and the non-central action of the force, which increases
with prolonged corrosion exposure [14].

6 CONCLUSIONS

A method is proposed that allows to study the stability of concrete rigidly pinched
columns at the base with asymmetrical aggressive corrosion effects, which is necessary for
their timely strengthening to ensure the reliability of the structure.
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