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SOME PROBLEMS OF OPTIMIZATION OF ROD SYSTEMS
CONTAINING COMPRESSED ELEMENTS USING ADDITIONAL
CONSTRAINTS

S. Bekshaev'
'Odessa State Academy of Civil Engineering and Architecture

Abstract: The article is devoted to the problem of increasing the stability of rod systems
containing longitudinally compressed elements. The influence of the imposition of constraints on the
behavior of such systems is investigated in order to determine such places for imposing constraints
that provide the maximum stability of the system reinforced by the constraint. To get generality, the
consideration includes such rod systems that allow various equilibrium configurations, for example,
having internal ideal hinges, as well as an arbitrary distribution of longitudinal compressive forces,
including leaving some areas free from compression. For the same purpose, the constraints are
considered as generalized, producing a reaction with an arbitrary spatial distribution. The paper
formulates some general results related to the influence of the introduction of generalized constraints
on the critical forces of a rod system with some generalizations related to the extension of the class of
rod systems under consideration. Particular attention is paid to the buckling modes in view of their
important role as a basis for describing various configurations of the structure. It has been established
that the shape of these modes, in particular, the position of their nodes, is essential for finding the
optimal position of the constraint. For the case of constraint in the form of a concentrated hinged
support, analytical expressions are obtained that represent the derivatives of the critical forces of the
system with respect to the coordinate of the support. The case of a multiple critical force, when this
derivative, generally speaking, does not exist, is especially considered. These expressions make it
possible to qualitatively characterize the optimal position of the support. The application of some of
the obtained results is demonstrated by the example of the problem of finding the optimal position of
an intermediate hinged support of a two-span rod supported at the ends by elastic hinged supports.
These positions are qualitatively described for various values of the stiffness coefficients of the end
supports. It has been established that under certain conditions, the optimal positions of the
intermediate support correspond to a special semi-curved mode of buckling, in which one of the spans
does not bend, but retains its rectilinear equilibrium shape.

Keywords: rod system, critical force, effect of constraint, optimization, semi-curved buckling
mode, qualitative sign.

JIESIKT 3AJJAYI OITUMIBAIIL CTPUKHEBUX CUCTEM, 11O
MICTATH CTUCHYTI EJIJEMEHTU, I3 3ACTOCYBAHHSAM
JTOJATKOBHX B’SI3EN

Bexmaes C. 5.
'00ecvra deparcasna axademis 6ydienuymea ma apximexmypu

AHotamis: CTaTTIO NPUCBAYEHO AaKTyalbHid MpoOneMi MiABHIICHHS CTIMKOCTI CTPHKHEBHX
CHCTEM, II0 MICTSTh TIO3JJOBXXHBO CTUCHYTI eJleMeHTH. JlOCHiPKy€eThesl BIUIMB HaKIIaIaHHS B’si3el Ha
MOBEJiHKY TAaKMX CUCTEM 3 METOIO0 BU3HAUYEHHS TaKUX MiCLlb BCTAHOBJICHHS B’s3€H, SIKi 3a0€31eUyI0Th
MaKCUMaJbHy KPUTHYHY CHIy, fKa XapaKTepH3ye CTIMKICTb cHCTeMM, MiacuieHoi B’s33t0. s
JIOCSITHEHHSI 3aralibHOCTI OMHCY JIO PO3TJISLy 3alydeHi TakKi CTPW)KHEBI CHCTEMH, SIKi JIOITYyCKalOTh
pi3Hi piBHOBaXXHI KOH(}irypauii, HanpuKIaa, Taki 110 MAIOTh BHYTPIIIHI iA€aNbH] MAPHIpH, a TAKOX
JOBUTEHUH PO3IOALT MO3/IOBKHIX CTHCKAIOYHUX CWJI, Y TOMY YHUCII TaKHi, 10 3aJHIIAE ACSKi TTTHKH
BUIBHUMH BiJl CTUCHEHHS. 3 TIEIO K METOI B’s31 PO3IJISAAAIOTHCS SIK y3arajibHEHI, sSKi TeHEpYIOTh
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peaKkIifo 3 MOBUILHUM IIPOCTOPOBHM pO3MOAUIOM. Y poOoTi chopmMympoBaHi desKi 3arajibHi
pe3yJbTaTH, 0 CTOCYIOTHCS BIUIMBY BBEJCHHS y3arajdbHEHUX B3¢l HA KPUTUYHI CHIIU CTPUKHEBOI
CHCTEMH, 3 ACSIKUMH y3araJbHEHHSIMH, OB’ I3aHUMH 3 PO3IIUPEHHIM KJIACy CTPUKHEBUX CHUCTEM, 110
posrnanarotbes. OcoOnuBy yBary mpufiieHo (opMaM BTPaTH CTIMKOCTI pO3TISAYBaHUX CHCTEM depe3
X BaXJIMBY POJIb SIK 0a3WCy JUTA OTHCY Pi3HUX KOH(ITypalliif KOHCTPYKIIii. BcTtaHOBIIEHO, IO BH IIAX
¢dopmM, 30KpeMa, MOJOXKEHHS iX BY3JiB, € CYTTEBUM MJIsl BiAIIyKaHHS ONTUMAIbHOTO PO3MIiIICHHS
B’s131. {1 BUMaAKy B’s131 y BUTJISAL 30CepeKEHOI MApHIpHOI OMOpH OTPUMAHO aHAJITHYHI BUPA3H,
10 TIPECTABIIAIOTh MOXIAHI KPUTHYHUX CHJI CUCTEMH TI0 KoopAwHaTI omopu. OcoOIMBO PO3TISTHYTO
BHIIAJ0K KPaTHOI KPUTHUYHOI CHIIM, KOJH Iif TOXigHA, B3aralli Kaxkydd, He icHye. Lli Bupa3u maiots
MOJKJIMBICTh SKICHO XapaKTepHU3yBaTH ONTHMalbHE IOJIOKEHHS OIMOpPH. 3aCTOCYBAaHHS ICSIKHX 3
OTPHMaHHMX PE3YJIbTaTiB MPOJEMOHCTPOBAHO Ha TMPHKIAAI 3aBJaHHS IOINYKY ONTHMAaIbHOTO
MTOJIO’KEHHS MTPOMDKHOI IIIAPHIPHOT OTIOPH JBOTIPOTOHOBOTO CTPIIKHS, OTIEPTOTO IO KIHIMX HA MPYKHI
mapHipHi onopu. SIKiCHO ommcaHi Taki TMONOXXEHHs I Pi3HUX 3HAa4eHb KOe(illi€HTiB KOPCTKOCTI
KiHLIEBUX omnop. BcraHOBIEHO, 10 32 MEBHMX YMOB ONTUMAIBHHM ITOJOKEHHSIM MPOMDKHOI OMOpU
BiJIMTOBiTae 0coOMMBa HaMiB3irHyTa (hopMa BTPATH CTIHKOCTI, B AKiil OJUH 3 IPOIBOTIB HE 3STHHAETHC,
a 30epirae mpsSIMOITiHIMHY PIBHOBaXHY (hopmy.

KuarouoBi ciioBa: cTprkHEeBa CUCTEMa, KPUTUYHA CHJIa, BIUIMB B’5131, ONTHUMI3allis, HAMIB3irHyTa
(hopMa BTpaTu CTIHKOCTI, AKiCHa O3HAKA..
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1 INTRODUCTION

When designing and operating various engineering structures, designers often face the
problem of ensuring the stability of their elements operating under conditions of longitudinal
compression. This raises various optimization problems associated with providing maximum
stability at minimum cost. One of these problems is the search for the most advantageous
distribution of constraints available to the designer, which provides the maximum possible
value of the critical force of the structure. The proposed article is devoted to solving this
problem for a linearly elastic rod system reinforced with one constraint. At the same time, the
considered rod systems include systems for which, in the absence of external loads, various
configurations are possible, in particular, those having internal perfect hinges, as well as
systems in which some sections remain free from longitudinal compression.

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT

Many studies have been devoted to the optimization of elastic structures, in which the
variables are the properties and distribution of the material, outlines, and other design
parameters [ 1-3]. Among them, there are relatively few works where the optimum is achieved
due to the distribution of singularities and, in particular, the distribution of supports [4—6].
Most of the proposed methods for finding optimal structures use universal schemes developed
in mathematics and numerical procedures based on them. At the same time, interesting and
important qualitative features of the obtained optimal solutions often remain unnoticed. In a
range of works [7-12] devoted to the search for the optimal arrangement of supports for
compressed rods, a simple and demonstrative approach was proposed and successfully used,
which makes it possible to determine this arrangement and reveal interesting and somewhat
unexpected qualitative features of the obtained optimal rods. In this paper, this approach is
developed taking into account the inclusion in the consideration of such systems, the study of
which leads to equations with degenerate operators. The study of the stability of such systems
1s connected with the well-known problem in algebra of simultaneous diagonalization of two
positive semidefinite matrices [13], however, in this paper, special attention is paid to the
spectrum of the corresponding eigenvalues and eigenvectors and its changes in accordance
with the objectives of the work.

3 THE PURPOSE AND OBJECTIVES OF THE STUDY

The purpose of the proposed work is to determine such a position of a concentrated
elastic or rigid hinge support, in which the main critical force of the rod system reaches its
maximum value. To do this, taking into account the expansion of the class of linearly elastic
systems under consideration, the features of the spectrum of their critical forces and the
buckling modes corresponding to them, as well as their change due to the setting of a
constraint, are studied. On this basis, results are derived that make it possible to establish
some qualitative features of the desired optimal position. Using these signs, in many cases it
iIs possible to determine these positions practically without calculations and a priori
qualitatively describe the corresponding buckling mode and estimate the maximum critical
force.
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4 RESEARCH RESULTS

4.1. Preliminary results. First, we formulate some general results related to the effect of
introducing elastic constraints on the critical forces of the rod system, which are necessary for
further conclusions.

1.1. Notations and assumptions
S — elastic rod system, including predetermined elastic and rigid constraints, connecting the
points of the system to the ground or fixed bodies.

S® _ system formed from S by the imposition of one additional constraint.

y = y(M) — displacement (configuration, form) of the system — function of the point M ,
which determines the position of the point M of the system (in the undeformed state y=0).

g=q(M) — load — a function of the point M, which determines the external force
applied to the point M ; it is assumed that the forces ¢ applied to the rod of the system are
perpendicular to the axis of the rod.

(q,y) —work of load g=q(M) on displacement y=y(M). If (q,y)=0, itis said that
the load ¢ is orthogonal to the displacement vy, or that the load ¢ is applied in a generalized
node of the configuration (form) vy.

The functions y and ¢ are considered as elements of the linear spaces Y and Q,
respectively, having arbitrarily large but identical finite dimensions. This allows us to assume
that ¢ =0, if for any y we have the equality (g, y) =0.

— Cy — linear operator that defines the internal forces acting on the points of the system
in position y(M) (including the reactions of the elastic and rigid constraints belonging to the

[T

system, connecting it to the ground). The sign is assigned to reflect the usual property of
elastic structures — to generate reactions that counteract the deformation that caused them. All
considered elastic systems are assumed to be conservative. Therefore, the operator C, like all
other occurring operators, is assumed to be self-adjoint, i.e. satisfying the condition for any y

and v

(Cy,v)=(Co,y) 1)

expressing the well-known reciprocity theorem.
It is assumed that in the absence of external forces, the system S can have equilibrium
configurations different from y =0, for which Cy=0= (Cy, y) =0, but always (Cy,y) >0,

I.e. operator C is non-negative.
If the elements of system S are subjected to compression by a constant load proportional
to parameter P, which does not cause deformation of the system at y(M) =0, then operator

C changes to (C—PN), where N is some linear operator, which, like C, we will assume
non-negative, i.e. (Ny,y) >0 with y=0. The non-negativity also reflects the usual feature
of the behavior of a compressed rod, the rotation of which generates a couple acting in the
direction of rotation. Non-strict inequality implies the existence of special configurations for
which (Ny,y) =0at y=0. In this case, Ny = 0 is necessary, because for a non-negative
operator N the Schwartz inequality [(Ny, u)| < /(Ny, y)+/(Ny,u) is preserved, which implies
for any u (Ny,u) =0, if (Ny, y)=0. A similar conclusion is also valid for the operator C .
For the systems considered in this paper, Ny is a system of couples arising as a result of the

rotation of compressed elements. Therefore, in these special configurations, all compressed
segments must not rotate, i.e. on each of them y = const.. The parameter P will be called the

compressive force. Let us introduce the notation
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W — ker N — kernel of operator N, i.e. the set of all y for which Ny = 0.

V — kerC—kernel of operator C, i.e. the set of all y, for which Cy =0.

U =V NW - thesetofall y, for which at the same time Cy =Ny =0.

W, VandU - subspaces of Y. In what follows, all forms belonging to W are called
special.

P At this stage of consideration, there is no need for any particular differential or integral
representation of the introduced operators. For simplicity, we can assume that we are dealing
with matrix representations associated with the choice of some bases in the function spaces y
and q.

1.2. Critical forces and buckling modes. The equilibrium position of a compressed
system subjected to load q is determined by the equation

—(C-PN)y+q=0, (2)

expressing the equality to zero of the sum of forces applied to each point of the system. The
corresponding homogeneous equation

(C-PN)y=0 3

determines the equilibrium positions of a system S subjected only to longitudinal compression
in the absence of an external load q. The existence of such positions different from the trivial
one y(M)=0 means that this trivial equilibrium ceases to be stable. It is known [14] that if at
least one of the operators C and N is nondegenerate, nontrivial solutions of the
homogeneous equation allow us to construct a basis in Y, which can serve as a convenient
tool for studying the behavior of the systems under consideration. Assuming the degeneration
of both operators Cand N, the question of constructing the corresponding basis should be
studied in more detail.

Let u,...,u, be abasisin U, u,,,...,u, be functions that complement u,,...,u, to a

basis in W, and u,,,, U,,,,... be functions that complement wu,...,u, to a basis in Y.
Substitute y=>_x;u; in (3)

d dimY
;XJCUJ+;X1(C_PN)UJ:0' (4)

Calculating the sum of the works of the forces applied to the system on each of the basis
displacements u, , we obtain the system of equations

Citksn X T T Cin g Xy T CagaXen + Critd+2%g42 + ...=0
CrzpaaXesn oo Chin g Xy T CzgaXin + Crita+2%a42 + ... =0

CopsrXisr + o0 CygXy T CiaaXin + Cy,a+2Xd+2 + ... =0 ®)
Corrksn X ToooFCypng Xy + (Cd+1,d+1 - Pnd+1,d+1) Xgaa (Cd+l,d+2 - Pnd+1,d+2)xd+2 +...=0
CaszksnXisr T Cyiaa Xy +(Cd+2,d+l - Pnd+2,d+1) X411 +(Cd+2,d+2 - Pnd+2,d+2 ) Xgpp Teee = 0

where ¢; = (Cu J.,ui) is the generalized stiffness coefficient equal to the work of the total

elastic reaction Cu,, taken with the opposite sign, caused by the j-th basis displacement u;,
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on the i-th basis displacement u;; n; =(Nuj,ui). Here it is taken into account that if at least

one of the indicesi, j does not exceed k=dimU, c; :(Cuj,ui):(Cui,uj):O, and if at

least one of the indicesi, j does not exceed d =dimW , n; =(Nuj,ui):(Nui,uj)=0.

According to the definition of the sets U and W for any nontrivial linear combination
Y =X Uy +-... XUy Cy = 0 and the strict inequality (Cy,y) >0 holds for y=0, which
implies the strict positivity of all principal minors of the matrix of system (5) up to the order
d —k inclusive [14]

Ck+1,k+l Ck+l,k+2 oo Ck+1,j
Ck 2,k+1 Ck 2,k+2 Ck2' .

A= ek ek >0, j=k+1,....d. (6)
Cj'kJrl Cj'k+2 ij

Let us perform the elimination of unknowns x, ,,...,X, in system (5) using the Gauss
method. As a result, the matrices corresponding to (6) take a triangular form, where on the
main diagonal in the row with the number h there is a positive value ¢;; =A,; =C .1,

Cl*lek+l :Ck+1,k+1| h=1, ey d —k [14]

Clle+l + Ck+l,k+2Xk+2 +...t+ Ck+1,d Xd + Ck+1,d+le +1 + Ck+l,d +2 Xd+2 + .= O
CoXeso Teoo T CngXy T CinginXon + CiizgioXgse + -0 = 0
Co—k.a-kXq + Cq.d:1 %411 + Cy.g+2%d-2 + ...=0 (7)
(Cd+1,d+1 - Pnd+1,d+l) Xgsa T (Cd+1,d+2 - Pnd+1,d+2)xd+2 +... =0
* *
(Cd+2,d+l - Pnd+2,d+l) Xd+1 +(Cd+2,d+2 - Pnd+2,d+2 ) Xd+2 +...=0

Here, the asterisk denotes the matrix elements obtained as a result of the Gaussian
elimination procedure. With the exception of the diagonal of the triangular block, the indices
in them have a traditional meaning (row number and column number, taking into account k

"zero" rows and columns). Moreover, it follows from equality c; =¢; that for i, j >d ¢} =c;
[14]. In system (7), the equations, from which x,,,,..., X, are excluded, represent a standard
algebraic eigenvalues problem with symmetric matrices

C

and |ny|, i,j>d, and the |n;|
Is positive-definite. It is known [14] that there is a discrete set P, < P,<... of non-negative
values P, which correspond to dimY —d linearly independent non-trivial sets {X,,,,Xy,5,--.},

which are solutions to system (7). After they are determined, from the first d —k equations
(7) Xeq,---» X are uniquely determined. Thus, system (5) allows one to determine dimY —d

linearly independent configurations v,, v,, ... corresponding to its non-trivial solutions, of the
form v =X, U, +...XUy +X4,,Uq,, +.... It IS convenient to take them as basis ones in Y
instead of uy.,;, Uy,,,.... They satisfy the equation

(c-PNJ, =0, (®)

S. Bekshaev
88 https://doi.org/10.31650/2618-0650-2022-4-2-83-102



https://doi.org/10.31650/2618-0650-2022-4-2-83-102

1V, Ne2, 2022
Crop. 83-102 / Page 83-102

MexaHika Ta maremMaTudHi meromu [/
Mechanics and mathematical methods

and also the orthogonality relation (Nvi,v,.):o, if P=P,, and can be chosen normalized
according to the condition (Nv,,v, )=1. In difference to the case of non-degeneracyof N , they

cannot be a basis of Y, since their number is d less than the dimensionof Y . Another
difference from the standard problem is that the functions v; are not defined uniquely,

because substitution in (3) shows that if v; is its solution corresponding to P =P;, then
v} =0,u, +...g,u, +o; forany g,,...,g, will also be its solution corresponding to the same
P=P;. The quantities P, are called critical forces (hereinafter — CRF), and ©»,;- the

corresponding buckling modes (hereinafter — BM) of system S .

1.3. Expansionof forms by buckling modes. Expansion of an arbitrary system
configuration by its BM is an effective tool for solving various problems of stability theory.
For the degenerate N, one can construct a similar generalized expansion by supplementing

the set of BM v,, v,, ... with functions u,,...,u, . In this case, it is convenient to replace the
set U,,,...,u; Wwith their linearly independent combinations w,,...,w, , for which
(Cwi,wj):O, and (ij,wj)zcj >0. Andbesides(Cvi,wj)= P, (Nvi,wj): P, (ij ,vi):O.
Anyconfiguration of system S canberepresentedas

k d-k
y=2.0;u;+ 2 bw; +> a,, ©)
1 1

where a;, b;and g; are scalars, and

1
a; =(Ny,vj), b :C—(Cy,wj).
i
We use expansion (9) to solve the inhomogeneous problem (2) (longitudinal-transverse

bending). Substituting (9) into (2), taking into account Cu; =0, Nu; = Nw; =0, we obtain
d—k d—k
~S'b,Cw, -3 a,(Co, ~PNv, J+q=0=->b,Cw, - > a,(P, -P)No, +q=0. (10)
1 1

Considering the left side of (10) as the total load applied to the points of the system, and
calculating the work of this load on displacements v;, w;and u;, we find

@o,) | _law) (11)

P -PT T

]

In addition, for the u,,...,u, the relations (q, u; ): 0 are satisfied as necessary conditions

for the existence of a solution to Eq. (2). These conditions are also sufficient, since together
with conditions (11) they mean the equality to zero of the generalized forces corresponding to
all generalized coordinates of the system S. This fact is an expression of the elementary
result that a matrix equation Ay=q has a solution if and only if its right-hand side is
orthogonal in the Euclidean sense to any solution of the equation A’y =0, where A" is the
matrix transposed with respectto A.

If P coincides with one of the CRF P; of the system S, its equilibrium, as can be seen

from (11), is possible only if the load q is orthogonal, (q,vj)=o, to all BMs corresponding
to P, . In this case, the system can have infinitely many equilibrium configurations, because,

S. Bekshaev
https://doi.org/10.31650/2618-0650-2022-4-2-83-102 89



ttps://doi.org/10.31650/2618-0650-2021-3-1-94-105

1V, Ne2, 2022
Crop. 83-102 / Page 83-102

MexaHika Ta maremMaTudHi meromu [/
Mechanics and mathematical methods

as Eq. (2) shows, along with vy, the superposition of y and any linear combination of all
BMs corresponding to P, satisfy (2).

1.4. Generalized constraint and generalized flexibility. We will say that one constraint is
imposed on the system S if at some points of the system another elastic system is attached to
it, which, for any joint displacements y = y(M), acts on the system S with a load R=R(M)
proportional to some function r =r(M) taken as a unit (basis); thus, in any position of the
system R=—Rr, where r =r(M) does not depend on this position and is a characteristic of
a particular constraint. In the case of a point support, the load r =r(M) is one concentrated
force applied at that point and equal in magnitude to the accepted unit of force.

Along with the spatial distribution r=r(M) of the basis load, the constraint is
characterized by the value of flexibility, which is determined from the following
considerations.

Consider the constraint as a separate elastic structure with its own stiffness operator C'
and load it with the force R =C'u, where u=u(M) is the corresponding configuration of the
constraint, which is not defined uniquely. If u and v are different configurations
corresponding to the same loading R=C'u=C'v, then due to self-adjointness (1)
(R,u)=(C'u,u)=(C'v,u)=(C'u,v)=(R,v), i.e. the work of the load R on all the
displacements it causes is the same. Since (C'u, u) represents twice the potential energy of the
constraint at the position u, this means that in all positions of the constraint caused by its
loading r (and generating a reactive load —r), it has the same potential energy.Then in an
arbitrary position u (R,u):R(r,u):RZ(r,R’lu):SRZ, where § does not depend on this
position and is equal to twice the potential energy of the constraint developing the basis
reaction —r. In this case, as we see, the numerical value of the reaction is equal to
R=(r,u)/&. In the case of a point elastic support, & is equal to the work of a unit force on
the displacement of the support caused by it, i.e. this displacement itself, which is called the

flexibility of the support. Therefore, for a generalized constraint, we will call the value &
generalized flexibility and consider it as a characteristic of the stiffness of the constraint.

1.5. Influence of constraint on critical forces. The configuration y of the system S®
formed from S by the imposition of one constraint, at buckling, can be defined as the result

of the action of a reactive load R =—Rr, considered as external one, on the system S released
from the constraint. According to (2)

—(C-PN)y+R=0 = (C-PN)y+Rr=0, R=(r,y)/5. (12)

The solution of this equation is sought in the form of a generalized expansion (9) by the
eigenforms of thesystem S, whose substitution into (12) gives

R(r,vj) b __R(r,wj). (13)

i V)T
P, —P C;

The presence of forms u,,...,u, in the expansion leads to the need to fulfill the relations
R(r, u; ): 0.

If for at least one | (r,uj);t 0, there must be R=(r,y)/8 =0whence, on the basis of
(12), follows (C-PN)y=0,i.e. y coincides with one of the BMs of system S, and P=P,
is the corresponding CRF.In this case, in expansion (9), the coefficients g; must satisfy the

k
condition Zgj(r,uj):o. This implies that the spectra of S® and S coincide and the
1
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multiplicity of P, in the spectrum of S® is one less than its multiplicity in S (due to the
reduction in the dimension of the set of special forms u;).

Thus, the appearance in the spectrum of the system S® of a CRF P that does not
coincide with any of the CRFs of the system S is possible only at R=(r,y)/§ #0, which

requires that for all j, j=1,...,k, (r,uj):O.In this case, each of the functions u,,...,u,
satisfies equation (12) for any P and in expansion (9) the coefficients g; can be arbitrary,

and P is not less than (k +1) -multiple CRF of the system S, which, together with y, also
k

corresponds to the forms ijZgjuj for arbitrary g;. If, in addition to the conditions
1

(r, uj): 0, the equality (r,y) =0 is satisfied, P coincides with one of the CRFsof S, and y

is one of the forms of the system S corresponding to it.
The value P is determined by the following equation of critical forces, which is obtained
from the equality R=(r,y)/o if expansion (9) is substituted into it, taking into account

relations (13), orthogonality (Cvi,wj): (ij,vi): 0, and the accepted normalization of
(o, f &l
J
+
P—-P le

]

.
(—r,R‘ly)+8:0 =3 CJ)2+5=0, (14)
j
where (— r, R’ly) is the work of the basis reaction —r on the displacement (9) of the system
S caused by it.
This equality defines the CRFs of S® that were not in the spectrum of S . As we see, for
the existence of such CRFs, it is necessary that at least for one of the BMs v, (r,vj)be

different from zero. We repeat that (14) is valid only at (r,uj):O forall j, j=1... k. If
U =V W =0, this requirement is omitted.

If P, determined from (14), does not coincide with any of the CRFs P, of the system S,
then exactly one non-special form y, determined from (9) and (13), corresponds to it up to a

K
term of the form Zgjuj. Otherwise, from two linearly independent non-special BMs
1

satisfying equation (12), one could compose a linear combination satisfying homogeneous
equation (3). Therefore, if the multiplicity of P in the spectrum of S is greater than (k +1),
P must be one of the CRFs P, of the system S, which corresponds to a non-special BM,

k
different from ) g,u; . In this case, the equality (r,»,)=0 must hold, because only in this
1

case P can be the root of equation (14).

If the positions of the points in the undeformed configuration of the system under
consideration are determined by the coordinate x, we can assume that y=y(M) = y(x). We
assume that the displacements of the points of all rod elements are perpendicular to the
undeformed rectilinear axis of each element, parallel to each other, as well as to the forces of
all considered loadings ¢,r. If r represents a concentrated force equal to one, applied at a
point with coordinate s, then the work (r,y) is numerically equal to the displacement y(s)
of this point, provided that the direction of this unit force coincides with the accepted
direction of positive displacements. In this case, (14) can be rewritten as
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r(s,5P)+5=0 = Zz’?(?)+z )50, (15)
P 1 c

]

where I'(s,s, P) is the deflection at a point s of the system S, compressed by the force P,
caused by a unit concentrated transverse force applied at that point.

Moreover, the equalities (r, uj): 0 mean that u,(s)=0 for all j, ie, s is the
generalized node of all special forms wu,,...,u, . This will be the case, for example, if the
system S contains a continuous rod, longitudinally compressed along the entire length or part
of it and supported in one or more of its cross sections on an elastic or rigid point support. In
this case, in any of the forms u,,...,u, , if they exist, u;(x)=0 on this rod. If U =V W =0,
no restrictions are imposed on the positions of the support in (15).

Equation (15) allows us to get a number of general conclusions regarding the effect of

the introduction of constraint on the spectrum of CRS. To this purpose, we represent the
solution of equation (15) graphically.

r

N

T I
| I
| I
| I
L

[

Let us focus only on the CRFs, which correspond to non-special BMs v ;. We divide the

spectrum of the system S into two parts. In one we will include changeable CRFs (CCRFs)
P, , each of which corresponds to at least one BM, not orthogonal to the constraint, for which

(r,vj)¢o. The second includes unchangeable CRFs (UCRFs), which, together with the

corresponding BMs, do not change after the introduction of constraint and are present in full
in the spectrum of the system S®. For them (r,vj):O.The condition (r,vj);t 0 means that

CCREFs are poles of I'(s,s,P) as a function of P and on the graph (Fig. 1) they correspond to
infinite discontinuities. If the CCRFs in the spectrum of the system S had multiplicity r, then
in the spectrum of S® its multiplicity is equal to r —1, since r linearly independent BMs v,

can be combined into r —1 linearly independent combinations orthogonal to r.

The spectrum of the system S® contains all multiple CCRFs of the system S with a
multiplicity one less than their multiplicity in S, all UCRFs of the system S with the same
multiplicity as in S and, finally, all the roots of equation (15) (among which there cannot be
CCREFs, but there may be UCRFs). Thus, the spectrum of the system S®is formed from the
spectrum of S by decreasing the multiplicity of each CCRF by one and joining all the roots of

equation (15). The number of CRFs of the system S® (calculated by their multiplicity)
falling on a certain segment of the numerical axis is equal to the number of CRFs of the

Fig. 1. Graphical representation of the solution of equation (15). "' =TI(s,s, P)
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system S on this segment minus the number of poles and plus the number of roots of the
function I'(s,s,P)+0o. Let us denote n(<P) the number of CRFs in the spectrum of the

system S strictly less than P ; n®(< P) is the number of CRFs in the spectrum of the system

S strictly less than P .

The entire numerical axis P can be divided into three subsets. The first contains
segments from zero to the first pole of I'(s,s,P) and from the roots of equation (15) to the
nearest pole on the right, but does not include the ends of these segments. On them
I'(s,s,P)+06>0. The second consists of poles of I'(s,s,P). The third contains segments
from the poles to the nearest right root of equation (15) and includes these roots. On them
I'(s,s,P)+0<0. It can be seen from the graph that for any P of the first and second subsets,

the equality n®(<P)=n(<P) holds. On the third subset n®(<P)=n(<P)—-1. The first

subset can contain only UCRFs belonging to the spectra of systems S and S® with the same

multiplicity, for which the equalities P, = P® = P, =P <P, , hold. The second contains all

the CCRFs of the system S, taking into account their multiplicity, and the CRFs of the
system S® equal to them with a multiplicity one less.They satisfy the relations
P,=P®=pP,,, if P,=P,, is a multiple CCRF, and =P, <PY <P, if P, is a simple

j+1 j+1
CCRF.The third one contains the CRFs belonging to both systems with the same multiplicity,
but with a changed numbering, so Pj‘l) =P,=>P < P() P..,. In addition to them, the third

j+l j+H

j+l

subset includes all the roots of equation (15). These roots Pj(l) satisfy the relation
P.<PY <P,

j+1-°

Thus, in all cases CRFs of system S® satisfy the well-known estimates [15]

P <PP <P,

j+11

(16)

that establish the boundaries of their change due to the imposition of the constraint. From

them, in particular, it follows that the CRF of the system S® cannot exceed the next by
number CRF of the system S . When studying the conditions for the maximum increase of the
CRF, the following statements, which follow from the previous considerations, are useful.

A. If at least one of the BMs of the system S corresponding to CRF P., is not

j+l

orthogonal to the constraint, strict inequality Pj(l) <P, is satisfied.

j+l

B. For the maximum increase of the j-th CRF, P =P, ,, it is necessary that the

constraint be orthogonal to each BM corresponding to the (j+1) -th CRF of the system S .
The above arguments and conclusions are of a general nature and remain valid if we

substitute (— r, R’ly) instead of I'(s,s, P) in them and consider equation (14) instead of (15).
1.6. Changing of the CRF when moving the constraint. Relation (15) makes it possible to

trace the change of the critical force P of the system S® when the position s of the
introduced support changes. Let us differentiate (15) with respect to s

3 2% ](s)v ©) |5 9O [P 5 wOw) o (17)

(P _P)2 & 4 ¥

At buckling of the system S® in form vy, its point, which has the coordinate x,
according to (9) receives displacement
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Y=Y 0,00+ 33by10,00+ Lo, (0.

In those areas where u;(x) =0, this displacement and the slope y'(x) of the section x,
taking into account (13), are equal, respectively

y(x):dszjwj(x)@ajv,.(x):_p{dj G, (1) 3 ) vj(x)]

1

d-k 70

y(=-R 2 é_(S)w'j (X)+2 U_jES) v (X)}

and on a supportin s

-4 £ 500y S - £ 2 )]

As well

Rz(r,vj)?‘ v%(s)
_p

(Ny.y)=(NY a2, Y ap;)=3a) ZZTP.—FZRZZW' (19)

This allows us to rewrite (17) as
(Ny.y) P _,y(s) _g

R? s R ’
whence
P _LRE) (20)
os  (Ny,y)

The form y is determined up to a constant factor, which can be chosen so that the
equality (Ny, y) =2 holds. Then (20) takes the form
oP

, oP ,
— =RY(8) & —=cy(6)Y (), (21)

where ¢ =1/3 is the stiffness coefficient of the introduced support.

Result (21) was known and used earlier for a more bounded class of rod systems [7-12].
Generally speaking, it is not valid if the critical force P is a multiple, since in this case
the corresponding BM y(x) and its derivative y'(x) are not uniquely defined.

Relation (21) represents the derivative of that CRF, which is the root of equation (15). As
noted, the system S can also have CRFs equal to some critical forces of the system S,
provided that the movable support falls in the node s, of the corresponding BM of rod S, i.e.

P, at v,(s,)=0 (don’t confuse k and dimU). For them, relation (21) is also valid if P, is

not a root of equation (15). In this case, relation (17) is not valid, because when the coordinate
s changes, not only the root changes, but also the form of the equation of CRFs (see (15))

5 v%(s) . e () +d*k w; (s) .
=k Pj -P Pk -P T c

]

5=0. (22)

It follows from it
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Vi (s) F&)%(q/r {lzﬁ®+wﬁ@+&

P-PR S-S5 S-S5 = PP T ¢

Passing to the limit at s — s, we get the equality

20, (8,) 2, (s % ( ¢

20(%) 01 (%) _ Z Z +5 I'(s,s,P)+5=0,
P,(SO) j=k P P 1 i

where the prime denotes the derivative with respect to s. It follows from it that P'(s,) =0, in

accordance with equality (21), which thus shows that the optimal positions of the movable
support should be sought among those points of the system at which the displacement y(x) or

slope y'(x) vanishes.

The multiplicity of the CRF in the system S® arises, in particular, when equation (15)
has a root equal to one of the CRFs P, of the system S. As stated above, in this case the
support must be in the node s, of BM wv,. Subtracting (15) from (22) and dividing by
(R, - P), we get

o) 1 {va(s)_zvf(so)} 1 {gwﬂs)wf-(so)}

(R-P)} R-P|fZP-P &P -P | R-P c,

[ 6] s [yio-dis)) |

"R-P|&P-P P-R “

1 |&w; (S)_wj (So)
=p F

C;

() gy ws) {{Z 1) ”2(5(’)}{%@”’?(5)?’%(5“)}. (23)

(P.-P) de—PXH—P) P-P|| = T j

When the support is moved from s; to s, instead of a multiple CRF P, , two different
CRFs PY=pR, and RY, =P, P, >R, >R, appear (see Fig. 2), which correspond to BM vy,
and vy, ,, satisfying the orthogonality condition taking into account (13)

) ’(s) ~ v%(9) v; (s) _
(i Vi) —Z(Pj —R)(P,-P) _;(pj -R)(P, _pa)+(F’k -R)(R-P) 0,

whence

vlf (S) — _Z U? (S) ) (24)
(R-R)(R-P) =(P,-R)(P-P)
When s—s,, P, and P, tend to P, v,f(s)/(s—so)2 — 02 (s,), the first term on the
right side of (23), taking into account (24), has a limit equal to —vf(so)/Pb’Pa' , where P, and
P, are the one-sided derivatives with respectto s of B, and P, , respectively, equal to
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Pa—llmp i P'_ImP P
$S—>Sy § — S S—>Sy § — S

From (24), taking into account (19), the relation follows

% (8%) _ 5 _Y(%) __(\Ny.y) (25)

RF i (P - Pk)2 R?

where vy is that of the BMs of the system S® at the location of the support at the node of the
BM v, corresponding to the CRS P, , in the expansion of which (9) due to (13) there is no
term a, v, . It means that (Ny,v, )=0.

The sum in (25) is equal to the derivative with respect to P of the deflection of the
system S® on the support placed at the node of the BM v.,at P=PR and R=1. Itis equal

to the tangent of the slope of the graph in Fig. 1 at P =R and without discontinuity (see
dashed line), i.e. at s =s,.

Substituting P =P, into (23) and passing to the limit at s —s,, we obtain, taking into
account (25) and (18),

ULZ(SO):_ULZ(SO)_ZV'(SO). (26)
P RP RP,
From (25) and (26) we obtain the equalities
' RZ 12
Pbr+Pa¢=2Ry (SO), P’P'I— Z)k (SO)’ (27)

(Nvy) """ (Nyy)

which make it possible to determine B’ and P,. They replace relation (20) in the case of a
multiple CRF P when it loses its meaning due to the non-uniqueness of y. We repeat that in
relations (27) one should use the form y orthogonal to all BMs w», of the system S

corresponding to P, (Ny,»,)=0. They take the simplest form if we accept the
normalization condition (Ny,y)=1. In this case, B, and P, are defined by the expressions

[ Jr\/y’2 )+ v 0)} :

Remark. The reasoning and conclusions made above regarding the CRFs of the system S
equal to or different from the roots of equation (15) remain valid even in the case of their
multiplicity in the system S. In this case, in all relations, starting from (22), one should write
D vi(s) instead of vf(s) and > vi%(s) instead of v(s), where the sums apply to all BMs
corresponding to a multiple CRF.

The next section demonstrates applications of some of the results obtained.

2. Maximum increase of the stability of an elastically supported two-span rod.

Further, as a system S, we consider an elastic rectilinear rod with a length equal to ¢, of an
arbitrary variable cross-section, freely supported at the ends on elastic supports with stiffness
coefficients ¢, and c, accordingly, compressed by a longitudinal force constant along the

length (Fig. 2 a).
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Fig. 2. Rods OL(c,,c,) (a), OL®(s,c,,c,) (b) and semi-curved BM (c)

We are looking for such an optimal position of the intermediate rigid hinged support, at
which the CRF of the rod reinforced with the intermediate support (Fig. 2 b) reaches its
maximum value By, .

The following notations are used:

OL(c,,c,) — rectilinear elastic rod, the ends O and L of which are hinged on elastic
supports with stiffness coefficients c, and c, respectively (Fig. 2 a);

GH(c,,c,) — a rod formed from OL(c,c,) by removing segments OG and HL
respectively from the left and right, and supported as OL(c,, cz);

GH®Y(s,c,,c,) —arod formed from GH (c,,c,) by introducing an additional absolutely
rigid hinged support at a distance s from the left end;

GH(s,c,,c,) — a rod formed from GH®(s,c,c,) by introducing a cut on an
intermediate support.

P.[*] - j-th CRF of rod *.

In [8], the problem posed was solved for the particular case ¢, =o. In this case, the
desired optimal position and the corresponding BM depend on the value c, of the rigidity of

the elastic support, and for some of its values, the maximum of CRF is realized at a special
semi-curved BM, in which part of the rod remains straight and horizontal (Fig. 2 c). The
conjugation point B of the horizontal and curved sections is determined by the equalities

c,-BL =c,((—b) = B[BL(c0,)], Pyax =C,((—D). (28)

Since an undeformed section remains to the left of the conjugation point when buckling
along a semi-curved shape, it is possible to install or remove an arbitrary number of
constraints on it that do not change this shape. The decrease of the rigidity of the left support
from to is just such a removal, retaining the semi-curved BM and corresponding to it CRF,
but possibly changing (increasing by 1) its number in the spectrum.

We designate A — the node of the 2nd BM of the rod OL (0, ), supported at the ends on

absolutely rigid supports, located at a distance a = OA from the left support.
The spectrum of CRFs and the corresponding BMs of the rod OL(cl,cz) contains all

CRFs P, P,, ... and BMs of the rod OL(0,o0) supported at the ends on absolutely rigid

supports, and, in addition to them, one special CRF P*, which corresponds to a rectilinear
BM with anode A" located at a distance a* from the left support, at that

p* ( Q= c,(

__ L gt (29)
]7/C1 +]/C2 Cl + CZ
These relations, as well as their inversion
¢ =P"/a", c,=P"/t-a", (30)
S. Bekshaev
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allow us to consider P* and a* as parameters that characterize the elastic fixing of the rod as
fully as the coefficients ¢, and c,, and in the mathematical sense are a change of variables.

Let’s agree to be located so that the node A" of a special (rectilinear) BM is located not

to the right of A, i.e., so that a" <a is always satisfied.
We introduce the notation

(—a"

o Pu P (31)

P, =P,

When looking for P,,,, , we consider the following cases.

Case 1. P* > P, . Let’s place an intermediate support in the node A and consider the rod
OLY’ (a,c,,c,). Its spectrum consists of the spectra of its two parts OA(c,,0) and AL(,c, ),
each of which contains a force P, and one special CRF c,a and c,({—a), in addition

ca>ca =P">P, >R, (32)
(-a P,

c,((—a)=P" =P"—2>P, 33

o(f-8)=P =P >R (33)

I.e. both special CRFs are greater than P,, whence it follows that after the imposition of a
constraint that eliminates the cut, the force P, (which was 2-multiple and main in the
spectrum of the rod OLY(a,c,c,)) will remain CRF of the rod OL”(a,c,c,), ie.
PO =P, =P, (by virtue of (16)) when placing the support in the node A of the second
BM of the rod OL(oo,oo). Other positions of the support (other than A) are not nodes of the
second BM of the rod OL(c,,c,) and, by virtue of statement A (Sec. 1.5), cannot provide the
maximum critical force P, .

Case 2. P* =P, . Inequality (32) remains valid, i.e. ca>P*>P,, and in (33) the sign
“>” changes to “=". P, remains the main CRF of the cut rod OL{’(a,c,,c,), and at least 3-

multiple. After the cut is eliminated, it will be at least 2-multiple the main CRF in the
spectrum of the rod OL® (a,c,,c,), i.e. the optimal location of the intermediate support is the

same as incase 1, and P, =P, .

Case 3. B <P" <P, . The left inequality means that c,(>c,({—a")=P">P,. The right
one leads to c,((—a")<P,(¢-a’/t—a)=c,<P,/(¢~a). Both inequalities lead to the
conclusion that there is a unique solution to the equation

C,((—X) =R [XL(e0, )], (34)

where X is the cross-section of the rod at a distance x=0X from its left end. This can be
seen from the fact that in (34) the left side increases, and the right side decreases at x
decreasing, i.e. when moving the cross-section X to the left. This solution x =b satisfies the
inequality O<b<a. It was established in [8] that when an intermediate support is installed in
a position B at a distance b from the left support, there is a semi-curved BM (Fig. 2 c),
which corresponds to CRF P, equal to

P, =¢,-BL =c,(¢—b) = R[BL(e0,50)] < P, [ AL(0,0)] = P, . (35)
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This BM has a zero slope on the support B, which is a necessary condition for the
extremum of the corresponding CRF (see (21)). It was proved in [8] that for other positions of
the intermediate support, the slope of the main BM on the support cannot be zero. Since

P, =Pl[BL(oo,oo)] is the CRF of the rod, shorter than OL(w,o), the inequality
P, >P, =R [OL(x,)] is fulfilled, from which the estimates P,>PR[OL(c,)] and
P, > R[OL(ex,c,)] follow, whence it follows that P, cannot be the minimum of the main
CRF of the rod OLY(s,c,,c,) as a function of the position s of the intermediate support. In
addition to B, the node A" of the rectilinear BM of the rod OL(c,,c,) also satisfies the
extremum condition for Pl[OL(l)(s,cl,cz)], since when the support is placed in A", its

reaction at buckling in this BM is zero. Depending on the relative position of the sections A*
and B, the following relations hold:

b>a" =P, =c,({-b)<c,((-a") = P, <P" = P, is the main CRF of OL“ (b,c,,c,), (36)
b=a"=P, =c,({-b)=c,({—a") = P, =P~ is the main multiple CRF of OL“ (b,c,,c,),(37)
b<a"=P, =c,({-b)>c,({—a") = P, >P* = P, is not the main CRF of OL”(b,c,,c,).(38)

In combination with conditions P, < B, <P,, relations (36) show that when the point B

of conjugation of the semi-curved BM is located between A and A® this point provides the
maximum CRF equal to B,,,, =P .

If B and A" coincide, according to (37) and (35) P* =P, <P, and there are two linearly
independent BMs — semi-curved and rectilinear, corresponding to CRF equal to
PMAX = PB =P".

If B is to the left of A", then, as can be seen from (38), P, will be greater than P",
which is the second in the spectrum of OL(c,,c,). Therefore, P, cannot be the main CRF in
OL®(s,c,,c,) . Let’s place a support in A" and consider a cut rod OLY(a",c,,c,). Its left
segment OA” is shorter than OA. Therefore, Pl[OA*(oo,oo)] > B, [OA(c0,0) | =P, > P, > P".
The right segment AL is shorter than BL, whence B[ A'L(s,%)|> R [BL(c0,00)]=P.
Thus, the cut rod OL{(a*,c,,c,) has a 2-multiple main CRF equal to P*, which corresponds

to two BMs, with inclined straight sections OA™ and A"L . After eliminating the cut in A", a
rod OL®(a",c,c,) is formed with the main CRF equal to P*. Since it was second in the
spectrum of OL(c,c,), P, =P°. There can be no other optimal positions of the

intermediate support, since the necessary condition (21) of the extremum of CRF is not
satisfied anywhere else.

Case 4. P*=P. CRF P* =P, is 2-multiple in the spectrum of rod OL(c,,c,) and, by
virtue of (16), after the introduction of a support at any point s of the rod, CRF of rod
OoL%(s,c,,c,) is equal to P, =PY =P =P*. The corresponding BM is a linear
combination of the BM v,(x) of rod OL(ex, ) and the rectilinear BM of rod OL(c,,c,) and
can be expressed explicitly up to a constant factor

y(x)=(s—a")o (x) - (s)(x-a"). (39)
Case 5. (R/2)<P" <PR,. Due to (16), the desired maximum P,,,, <P,. The condition
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P*>(PR,/2) implies the inequality

1 1,12 o)
P ¢l c,t PR

from which it follows that at least one of the numbers ¢ ¢, c,( is greater than or equal to P,.
These numbers are the special CRFs of rods OL(c,) and OL(w,c,) formed from

OL(cl,cz) by setting a rigid support in L and O, respectively. The spectrum of each of them
consists of the spectrum of the rod OL(o0,%0) and one of the special CRFs, which corresponds
to a rectilinear BM. The optimal position of the movable support is that of the two points L
and O, which provides the value of the special CRF greater than or equal to P, or both of
these points, if each of the numbers c,¢, c,( is not less than P,. In this case, B, =R is
reached, which corresponds to the main BM of the rod OL(wx, %) (and, possibly, a special
one, if one of the numbers ¢, c,( is equal to P,). There are no other optimal positions,
because other positions are not nodes of this BM.

Case 6. P"<(PR/2). If one of the numbers c(,c,( exceeds or equals P, all the
conclusions of case 5 remain valid, in particular, B,,,, =F when installing a support at one
of the ends of the rod. Otherwise, consider a cut rod OLY(s,c,,c,) with an arbitrary location
of the intermediate support at a distance s from the support O. It has two CRFs c;s and
c,(C—s), which correspond to special BMs, in which one of the segments to the right or left

of the support rotates, remaining straight. Each of these CRFs, due to the inequalities
cs<cl, c,(l—s)<c,l is less than the largest of the numbers c(, c,(, less than P. The

remaining CRFs are CRFs of rods that are shorter than OL(e0, ), and therefore they exceed
P. Thus, ¢;s and c,(¢—s) are the lowest CRFs in the spectrum of the rod OL{(s,c,,c,).
After the cut is eliminated, a rod OL® (s,c,,c,) is formed whose main CRF does not exceed
the value of the highest of the numbers ¢;s <c,(, c,({—s) <c,(. At the same time, the values
c,( and c,( realise when the support is installed at the right and left ends of the rod,
respectively. Thus, in the considered case P, =max{c,(,c,(}, and the optimal position of
the support is the right end L of the rod, if ¢, >c,, the leftend O, if ¢, >c,, and any of them,

if ¢, =c,.
5 RESEARCH RESULTS DISCUSSION

The presented results make it possible to study the stability of a wide class of rod
systems, including mechanisms. They show that even with such an extended approach,
against the background of a multiplicity of equilibrium positions, one can speak of a discrete
spectrum of critical forces and buckling modes in the traditional sense, which makes it
possible to apply the expansion of system configurations by these modes. Note that the
introduction of a constraint significantly changes the critical forces and buckling modes only
if the constraint is orthogonal to all special forms. In the case of a constraint in the form of a
concentrated hinge support, this orthogonality can only be ensured when it is installed in
some parts of the system. In most cases, in practice, there are systems that do not have special
forms. For them, the results of the work can be applied without limitations.
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6 CONCLUSIONS

In the work, the influence of the introduction of a constraint on the stability of rod
systems is studied. The study made it possible to draw a number of qualitative conclusions
regarding the results of such reinforcement. Based on them, simple qualitative features of
optimal locations for imposed constraint are formulated that provide the maximum critical
force of the enhanced system. This makes it possible in many cases to determine these
positions practically without calculations, which is demonstrated by the example of a rod
hinged at the ends on elastic supports and reinforced with an intermediate hinged support.
Note that for certain values of the stiffness coefficients of the end supports, the optimal rod
buckles at loss of stability in a special semi-curved mode, in which one of the spans remains
straight. Although special attention is paid to the constraint in the form of a concentrated
hinge support, the results obtained allow us to consider generalized constraints with an
arbitrary spatial distribution of reactive forces. Corresponding generalizations will be the
subject of further research.
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