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STABILITY OF RODS WITH INITIAL IMPERFECTIONS IN THE
FORM OF ECCENTRICITY OF LOAD APPLICATION UNDER
LINEAR AND NON-LINEAR CREEP CONDITIONS

M. Bekirova'
'Odessa State Academy of Civil Engineering and Architecture

Abstract. Stability of a compressed rod having initial imperfections in the form of eccentricity of
applied load under conditions of linear and nonlinear creep is considered. It is noted that all real
elements have some initial imperfections in the form of technological deflections, eccentricities of
applied loads, etc., so they begin to bulge from the very beginning of loading.

Another important factor in stability theory is the consideration of material creep. In this regard,
the loading process is divided into two phases: the instantaneous loading process and the creep phase
under constant external load. Moreover, creep can be time-limited or unrestricted.

In the paper formulas for determination of critical forces of stability loss of the rod having initial
imperfections, under short-term and long-term action of load are obtained. The equation allowing to
determine time of the first crack appearance is derived. Derived are equations the roots of which are
loads at action of which the first cracks appear at initial moment of time and at arbitrarily long period
of load action. Analysis of acting force determining the character of rod deformation is executed.
From the constructed stability equation it is possible to determine the critical force corresponding to
the critical length of the section with cracks.

For similar problems in nonlinear formulation formulas for determining critical force and critical
displacement corresponding to maximum load are obtained. For the case of long duration load the
equation which establishes relationship between load and displacement is obtained. Equation for
determination of critical force under prolonged action of load has been derived. It has been established
that critical displacement is the same under short- and continuous action of load. It is shown that at
any intermediate moment critical displacement can be achieved under load lying in certain interval.

Keywords: stability, rod, initial imperfection, eccentricity, linear creep, non-linear creep, critical
force, crack, critical displacement.

CTIMKICTh CTPUKHIB, IO MAIOTh ITIOYATKOBI
HEJOCKOHAJIOCTI Y BUTJIAAI EKCHEHTPUCHUTETY
JIOJJATKY HABAHTAKEHHS B YMOBAX JIIHIMHOI TA
HEJITHIMHOI MOJIYYICTh

Bekiposa M. M.

I : . .
Ooecvka depoicasna akademis OyOieHuymM8a ma apxXimexmypu

AHoTanis. Po3rnsgaerses CTIMKICTh CTUCHEHOTO CTPHKHS, 1[0 MA€E MOYATKOBI HEIOCKOHATIOCTI Y
BHTJISII €KCIIEHTPUCHUTETY 3aCTOCYBAHHS HABAaHTAKCHHSI B YMOBAX JIIHIHHOI Ta HEIHIMHOI TOB3YYOCTI.
3a3HadaeThCH, MO II€ pEaNbHI EIEMEHTH MAaloTh Ti YW 1HINI IMOYAaTKOBI HEIOCKOHAIIOCTI SIK
TEXHOJIOTIYHUX TMPOTHHIB, CKCIECHTPUCHUTETIB NPUKIAJCHUX HABAaHTAXKCHb Ta IHIIKUX, TOMY BOHHU
MOYMHAIOTH BUTPIIATHCS BiJl TOYATKY HABAHTAKCHHSI.

[Ile ogaMM BaKIMBUM (PAKTOPOM TeOPii CTIMKOCTI € O0JIiK MOB3y4OCTi MaTepiaiiB. Y 3B’3Ky 3
UM TIPOLIEC HABAHTAXKCHHS PO3AUIAETHCS HA J[BA €TANM: MUTTEBHI NPOICC HABAHTAXKCHHS Ta €Tall
MOB3YYOCTI TIpH TIOCTIHHOMY 30BHINTHROMY HaBaHTaXeHHI. [IppdoMy TOB3yYiCTh MOXKe OyTH
00MeXeHOI0 B yaci 200 HEOOMEKEHOIO.

M. Bekirova
110 https://doi.org/10.31650/2618-0650-2023-5-1-110-120




Mexanika Ta MareMaTW4Hi MeTongu / % V/1/2023
Mechanics and mathematical methods Crop. 110-113 / Page 110-120

VY poboTi oTpuMaHi (GOpPMyHM BHU3HAYCHHS KPUTHUYHUX CHJI BTPATH CTIMKOCTI CTPHIKHS, Mae
MOYATKOBI HEJAOCKOHAJIOCTI, MPH KOPOTKOYACHOMY 1 TpHBAJIIOMY Jii HaBaHTaxkeHHs. [loOymoBaHo
PIBHSIHHS, IO JIO3BOJISIE BU3HAYHUTH Yac TIOSBH MEPIIOT TPIllUHYU. BUBeICHI piBHAHHS, KOPIHHSAM SKHX
€ HaBaHTAXCHHS, TPH [ii SKUX YTBOPIOIOTHCS TIEPIi TPIMIMHA B TIOYATKOBHHA MOMEHT 4Yacy 1 NpH
Oyab-IKOMY BEJIMKOMY 4Yaci [ii HaBaHTaXeHHs. [IpoBeneHO aHali3 YMHHOI CWJIM, IO BHU3HAYae
xapakTep aAehopMyBaHHA CTPWXKHA. 31 MOOyJOBaHOIO PIBHAHHS CTIMKOCTI MOKHa BH3HAYUTH
KPUTHYHY CHITY, SIKiil BiZINIOBiTa€ KPUTHIHA TOBXKHUHA JIUISHKH 3 TPIMTHHAMH.

Jl1s aHaJIOTIYHUX 3aBlaHb Y HEIIHIHHIA MOCTAaHOBII OTpuMaHi (JOPMYJIM BU3HAYCHHS KPUTHYHOI
CWIN i KPUTHYHOTO TIEPEMIIICHHS, BiNMOBIIaTbHUX MaKCHUMAaJTbHOMY HaBaHTaXeHHi. JlJis BHIanKy
TpUBAJIOT il HABAHTA)XKCHHS OJCPKAHO PIBHSHHS, III0 BCTAHOBIIIOE 3B’S30K MK HABaHTA)XKCHHSAM Ta
nepemileHHsM. BuBeieHO piBHSHHS BU3HAYCHHS KPUTHYHOT CHIIHM MTPU TPUBAIOMY JIiT HABaHTaKEHHS.
BcraHoBiieHO, 110 KPUTHYHI TEpPEMINICHHS OJHAKOBI 3a KOPOTKOYAaCHOI Ta TpwBaioi il
HaBaHTaXeHHs. [lokazaHo, Mo y OyIb-SKUH MPOMIXHHI MOMEHT 4acy KPUTHYHE TIEPEMIIIEHHS MOXKE
OyTH JOCATHYTO TIPH HABAaHTAKCHHI, IO JISKUTH Y IEBHOMY 1HTEPBAJIi.

Knw4oBi cjoBa: CTiWKICTh, CTPIKEHb, IOYaTKOBA HEIOCKOHAICTh, EKCIICHTPHUCHUTET,
MOB3YYiCTh JIiHIfiHA, TOB3YYiCTh HEJliHIliHA, KPUTHYHA CUJIA, TPILIHMHA, KPUTHYHE HepEMILLICHHS.
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1 INTRODUCTION

It is known [1, 2] that one of the most important problems of deformable solid mechanics
is the problem of structural stability. It is the loss of stability that is associated with a number
of accidents and disasters. Loss of stability is especially dangerous because it occurs
suddenly, often with stresses that are significantly lower than the ultimate strength of the
material.

Modern stability theory is based on the study of the loading process of structures and
their elements, and this process is considered unstable if a catastrophic development of
movements and deformations corresponds to its continuation, however small. Failure occurs
at the limit points called bifurcation points and the corresponding loads are called stability
limits or critical loads.

All real elements have some kind of initial imperfection (technological deflections,
eccentricity of load application etc.) and therefore they start to bulge from the very beginning
of loading.

Another important factor in stability theory is the consideration of material creep. The
loading process is therefore divided into two phases: the instantaneous loading process and
the creep phase under constant external load. Moreover, creep can be time-limited or
unrestricted.

2 LITERATURE ANALYSIS AND PROBLEM STATEMENT

The problem on the stability of an elastic rod under the action of an axial compressive
force was first solved by L. Euler. This solution is given in numerous literature on the stability
of rods, of which special mention should be made [3-5]. However, field tests have shown that
this solution is not applicable for real steel rods, due to the inevitable curvature of the element
axis during fabrication and transportation and inaccuracies in alignment during assembly. In
this regard, different solutions have been obtained for a rod under the action of an axial
compressive force applied with eccentricity [3-5].

An interesting analysis of the calculation procedures for centrally compressed steel rods
laid down in various normative documents has been carried out in [6].

One of the first publications in which the influence of initial imperfections on stability
was investigated is the monograph by A. R. Rzhanitsyn [7]. Initial geometric imperfections
most significantly affect the stability of thin-walled open section elements [8]. In [9] a fourth
degree polynomial is used to describe the shape of initial imperfections.

There are a large number of publications on creep rupture of compressed rods, including
[10-14] and others. The approaches to the problem are very different - finite difference
method, finite element method, Bubnov-Galerkin method, power method in the Ritz-
Timoshenko form, etc.

N. Rabotnov [15] and S. A. Shesterikov [16, 17] suggested a new approach - they
connected the question of creep stability with the classical definition of stability. Taking
strengthening law as a basis, they conducted its linearization taking into account small
deflections, and then performed analysis of rod motion under action of perturbations.

The works of scientists from Odessa school of creep theory headed by I. E. Prokopovich
[18-20] should not be overlooked.

All works considering the issues of rod stability with regard to creep can be divided into
two directions. The first, classical approach assumes the existence of change of stable
configurations of equilibrium - after some time, which is called critical, there is a transition of
rectilinear form into curved one. The second approach to investigating buckling is to assume
that the creeping process in the rod leads to reduction of its stiffness and, consequently, the
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loss of stability.

The second approach in investigation of rod bulging in creep is based on the
consideration of initial imperfections, defects (malformations, eccentricity of load, etc.). In
this approach it is assumed that initial imperfections in geometry or eccentricities increase
with time, leading to failure.

3 PURPOSE AND OBJECTIVES OF THE STUDY

The aim of this work is to solve the problem on the stability of a rod having initial
imperfections in the form of eccentricity of load application under conditions of linear and
nonlinear creep.

In the stability of elastic rods one distinguishes a loss of stability of the first kind,
associated with the possibility of existence of two forms of equilibrium - stable and unstable,
and a loss of stability of the second kind, associated with the possibility of unlimited
development of movements of the rod, possessing one or another initial imperfection.

Since the creep increases the deformations and displacements, it is natural to consider a
loss of stability of the second kind in the study of the stability of rods made of materials with
a considerable creep. For a rectilinear rod, such a loss of stability is possible only in the
presence of initial imperfections of shape (initial failure) or state (eccentric application of
compressive force, deviation from rectilinear shape due to external action).

4 RESEARCH RESULTS

To solve the problem of the stability of a flexible reinforced concrete rod under
conditions of linear creep with account of cracking, consider a rod pivoted at the ends with a
rectangular symmetrically reinforced cross-section. The load P is constant in time and is
applied with eccentricity e, .

Two stages can be distinguished in the deformation of such a rod. Stage I - the load P is
conditionally "small" to such an extent that cracks in the concrete tensile zone do not appear
during the whole considered time interval. Stage II - the load P is conditionally "large" to
such an extent that cracks in the concrete tensile zone appear either at the time #, of load

application or at the time ¢, > ¢, (¢, - time of the first crack formation).

The relationship between deformations and stresses in concrete is established by the
linear theory of elastic heredity (TEH):

e(t)y=o(t)o(t,7) —j0(7)5(f, 7)/ ordr;

— 1 .

CE(0)+C(t,7) M)
C(t.1)=C,[1-Be 7" ];

C(to’to) = Co(l_B)-

5@, 7)

The difference (I—B) takes into account the fast-moving part of the creep deformation,

conventionally referred to a point in time #,, hence C(Z,,f,) corresponding to the short-term

action of the load.
Stage 1. At this stage the solution of the integrodifferential equation of motion of the
reinforced rod, or a corresponding partial differential equation, is the function
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y(z,1) = m @)

where f(¢)— displacement of the middle section along the length of the bar:

fo=re){(1-,-pP/(,,-P)
-exp[-#(P,,,, — P)/ (P, = P)(t—1,)]+ (P, - P)P,,, —P)};

4e, P
f(to)—m,
y = yd+e) .
" [1+(-B)e]’
p=FEC,.

3)

At t—t, — o we have:

4e,P
Sf(0)= m : 4)

cont

According to the solutions obtained for the reinforced concrete core, two forces can be
specified — P, and P

cont *
P, =rEJ, ! {a+1/[1+(1-B)p]};
P, =mEJ, |Fla+1/(1+9)];

cont

a = pp;
— 2AS .

SR )
_ k4,

P I, >
— ES

n= E,

The critical force for a loss of stability of the second kind is defined as the minimum
value of force that results in an unrestricted increase in displacement.

P, — the critical force under short-term loading, determined by the condition
S (&) =
P, —the critical force under continuous load, determined by the condition f(c0) —o0.

Knowing the displacement y(z,?), it is possible to determine the height of the concrete
compression zone and the stresses in the reinforcement and concrete in any cross-section at
any time.

In bendable and eccentrically compressed reinforced concrete bars, cracks in the cross-
sections in the tensile concrete appear if the condition

Gy =—2R . ©)
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After a number of transformations we obtain an equation which allows us to determine
the time of the appearance of the first crack. The first crack appears in the average section
along the length of the rod (z =//2), and the time of its appearance is defined as follows:

ty =t,~1/7,(P, ~P)/ (P

‘In[(P, -P)-(P,,, —P)/ (P

cont

—P).

(7
—-P,)/ zy,/4e,P-1/(P,,, —P)].

ont

Of interest are the loads P, and P, under the action of which the first cracks are formed
at the times ¢ =¢, and ¢ =00, respectively.

P. and P, are defined as the roots of the equations

ﬂ.yT(Pcr_P) :1.

4e,P ’ ®)
ﬂ.yT(Pcont_P)zl

4e,P '

Let's look at the magnitude of the acting force, which determines the nature of the
deformation of the rod.

If P<P;, then over the whole considered time interval the deformation occurs without
crack formation (stage I). If P} < P < P,, then cracks appear during the deformation process
(stage II). If P> P, then cracks appear immediately after load application (Stage II).

Stage II. In the section of the rod with length /. there will be additional displacements
caused by the decrease of stiffness as a result of cracking. Considering the rod deformation at

the segment /., one can find the critical force under prolonged action taking into account
cracking - P! .

After a number of transformations the stability equation is reduced to the form
Pl =27 AE [3(y, +¢,) —h(y; +e)+h . 9)

Here [, — the length of the section with cracks, determined by the dependencies

7wy (P, —P) 1
4e,P

ﬂ-yT(Pcont_P)zl; (10)
4e,P

L, =1{1-2/ rarcsin| 7y, (P, —P.,)/ 4e,PL, |}

cont cont

To the critical force P’

cont %

determined from equation (9), corresponds the critical length
of the section with cracks /, .

S DISCUSSION OF RESEARCH FINDINGS

It can be concluded from the results of these calculations that consideration of creep and
cracking leads to a significant reduction in the critical forces.

However, all the above considerations refer to the behavior of compressed flexible rods
under prolonged action of loading under conditions of linear creep. Let's consider the
operation of the rod under creep conditions in geometrically nonlinear formulation.
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Consider a flexible rod made of a material with creep. The support is articulated. The rod
is loaded with a longitudinal compressive force P, constant in time, applied with eccentricity
e, in the direction of displacement.

The integral-differential equation of slow motion has the form

t a ,
ﬁ—g[y(x,t)jLeo]+§J-[y(x,r)+eo:|%r)dr:0. (11)

Here y(x,r) — The movement of the rod in the plane of deformation (in the direction of ¢,);

1/ p(x,) —rod curvature in the same plane;

p(jc 7 =—y* ()c,t)[1+(y')2 (x,t)]_i. (12)

The creep is further accounted for at the level of elastic heredity theory (TEH), as in the
case of the linear creep variant.
After a number of transformations the equation is obtained

; I (P «°
f@0+MA&§—%Jf@J+ ——=0, (13)

which establishes the relationship between displacement, eccentricity and short-term loading.
After introducing relative eccentricities s =¢,// and displacements

Ft) == 1) F()==f(0), (14)
) %
equation (13) is written as:
sy 3L 2P
fwm+iﬂ,qu+3sg 0. 15)

Here P, =7’El / I — is the Euler force, i.e. the critical force under short-term loading in

the case of approximate curvature (linear formulation).
From equation (15) it follows a linear relationship
8 (1) -3 (1)

p=_
8 ¢ 4s+F(1,)

; (16)

which establishes the relationship between load, displacement and eccentricity. The critical
force is determined from the condition

oP
= =0 17
oF (17)
It follows that
3 > 16
F*(t,)+6sF (to)—?s=0. (18)
M. Bekirova
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The critical force is determined by the formula:
2
| F,(8-3F,
p Er (8235

P =—

| 19
8 ¢ 4s+F, (9

where [, —the displacement corresponding to the maximum load, which is the root of
equation (18):

F, =2§/§s(1—3s2 +\/1—6s) +2</§s(1—3s2 —\/1—65) —-2s. (20)

At small values of s (s <0,01) dependency can be used:

F, :2N§s(1—3s2+\/1—6s2)—s}. @1

Displacements at # — o are defined as a root of equation

8 P 32 P
F’ ——|1l——|F —s———=0. 22
3 e [ T @
From (22) it follows

8F(oo)—3F3 (oo)
4S—F(oo) '

P:%(l+(/))Pe (23)

This relationship establishes the relationship between load and displacement in the case
of prolonged load action. This is the equilibrium curve. The maximum on this curve

determines the critical force P, . From condition (17) it follows that

cont *

F3(OO)+6SF2(OO)+%S=0. (24)

Critical force P

cont

is defined by equation:

1 E‘ont (8 - 3E0nt2)
P, .=—(1+¢)P , 25
cont 8( (0) e 4S —E,Um ( )
where F, , — the displacement corresponding to the maximum load, which is the root of

equation (24).
It is obvious that the roots of equations (18) and (24), representing the critical
displacements F, and F, , of both short-term and long-term loading respectively, are the

cont

same

F.=F, =F. (26)

cont

In case ¢ =1, displacement F is developed by the action of a force F,, and in case

t — o — by the action of a force £, , .
Since the critical displacements for both momentary and continuous loading are the
same, it follows that at any intermediate point in time 7, <# <o such a displacement F~ can

be achieved at a load lying in the interval
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F.>F>F

cont *

(27)

6 CONCLUSIONS

Thus, formulas for determination of critical forces of stability loss of the rod having
initial imperfections, under short-term and long-term action of load P, and P respectively,

cont

are obtained. An equation permitting to determine time of the first crack to appear has been
derived. Derived are the equations the roots of which are loading P, and P, , under the action

of which the first cracks form at time moments ¢ =f, and ¢ =0 respectively. The analysis of

acting force determining the character of rod deformation has been carried out. From the
stability equation (9) it is possible to determine the critical force P, , to which corresponds

cont >

the critical length of the section with cracks /. .

For the similar problems in nonlinear formulation formulas for determining of critical
force and critical displacement corresponding to maximum load have been obtained. For the
case of prolonged action of load, equation which establishes relationship between load and

displacement was obtained. Equation for determination of critical force P_,, under prolonged

cont
action of load has been derived. It has been established that critical displacement is the same
in short term and long term action of load. Consequently, at any intermediate point of time

t, <t <o displacement F" can be achieved at a load lying in the interval of F, > F > F

cont *
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