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Abstract.Existence of co-spectral (iso-spectral) graphs is a well-known problem of the classical
graph theory. However, co-spectral graphs exist in the theory of quantum graphs also. In other words,
the spectrum of the Sturm-Liouville problem on a metric graph does not determine alone the shape of
the graph. Co-spectral trees also exist if the number of vertices exceeds eight.

We consider two Sturm-Liouville spectral problems on an equilateral metric caterpillar tree with
real L2 (0,1) potentials on the edges. In the first (Neumann) problem we impose standard conditions at
all vertices: Neumann boundary conditions at the pendant vertices and continuity and Kirchhoff’s
conditions at the interior vertices. The second (Dirichlet) problem differs from the first in that in the
second problem we set the Dirichlet condition at the root (one of the pendant vertices of the stalk of
the caterpillar tree, i.e. the central path of it). Using the asymptotics of the eigenvalues of these two
spectra we find the determinant of the normalized Laplacian of the tree and the determinant of the
prime submatrix of the normalized laplacian obtained by deleting the row and the column
corresponding to the root. Expanding the fraction of these determinants into continued fraction we
receive full information on the shape of the tree. In general case this continued fraction is branched.
We prove that in the case of a caterpillar tree the continued fraction does not branch and the spectra of
the Neumann and Dirichlet problems uniquely determine the shape of the tree. A concrete example is
shown. The known pair of co-spectral trees with minimal number (eight) of vertices belongs to the
class of caterpillar trees.

Keywords: metric graph, tree, pendant vertex, interior vertex, edge, caterpillar tree, Sturm-
Liouville equation, potential, eigenvalues, spectrum, Dirichlet boundary condition, Neumann
boundary condition, root, continued fraction, adjacency matrix, prime submatrix, normalized
Laplacian.
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JAEPEBA 3A IBOMA CIIEKTPAMUA
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Ilig0ennoykpaincokuii HayionanvHuil nedazoiunuti ynigepcumem im. K. /[. Yuuncokozo

AHoTanisi. IcHyBaHHA KOCHEKTpaIbHHX (i30CIEKTPabHUX) TpadiB € BIIOMHM Y KIIaCHUIHIN
Teopii rpadiB. Ane KocmekTpanbHi rpadu iCHYIOTH 1 y Teopil kBaHTOBHX rpadiB. [Hakme Kaxy4w,
onuH crnekTp 3amadi Lltypma-JliyBimias Ha MeTpudHoMy rpadi He BHU3HA4Ya€ OJHO3HAYHO (hopmy
rpady. KocriekrpanpHi gepeBa TakoX iCHYIOTb, SIKITIO KUTBKICTh BEPIIIHH ITEPEBUIITYE BICIM.

Mu posrnsgaemo ABi crekTpaibHi 3amadi Ltypma-JliyBiuis Ha piBHOOIYHOMY METPUYHOMY
nepesi-rycennui 3 piicanmu 2L (0,]) moreHmianamu Ha pebpax. Y mepiuiit 3amadi (3anaui Heiimana)
MH 33laEMO CTaHJApTHI YMOBHM Yy BEpIIMHAX: YMOBH HEHMaHa Ha BHCAYMX BEPIIMHAX Ta YMOBH
HerepepBHOCTi 1 Kipxroda y BHyTpimHix Bepmmnax. Jpyra 3agada (3amada Jlipixie) Biapi3HSIETHCS
BiJ Mepmoi TUM, WO Yy KopeHi (OgHIM 3 BHUCSYMX BEepIIMH cTebia JepeBa-TyCeHHUI, TOOTO
HOTOIEHTPaIBHOTO MapIIpyTy) HaKJIaAeHO yMOBY Jlipixie. BUKOpHCTOBYIOUM aCHMITOTHKN BIIACHHUX
3HAUeHb NUX 3aJad, MM 3HAXOJUMO BH3HAYHMK HOPMOBAHOIO JAIUlaciaHy JepeBa i BH3HAYHHK
TOJIOBHOI MiAMATPUIIl HOPMOBAHOIO JarulaciaHy, OTPUMAaHOi BHIAJICHHSAM psAKa Ta CTOBMLSA, SKi
BiJIIOBIIal0Th KOpeHI0. Po3BHWBarOUM BiJHOIICHHS IIMX BU3HAYHWKIB Y JIAHIFOTOBHH Jpi0, MH
oTpuMyeMo iH(popMaIio mpo GopMy nepena. Y 3araJbHOMY BHUITAIKY IIEH JTaHITIOTOBHIA
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po3ranmyxyerbcsi. Mu IOBOAUMO, IO y BHIIAJKY JSpeBa-TYCCHHINI IICH JaHIIOTOBUI 1pi0 HE
po3rairy)XyeThcsl 1 crekTpu 3amad [ipixme i Helfimana ojHO3Ha4YHO BHW3HAYaOTH (popMy depena.
PosrnsHyTo KOHKpeTHMH npukian. Bimoma KochekTpaihbHa mapa JepeB 3 HAMEHIIOH (IeB’SITh)
KUTBKICTIO BEPIIMH HAJISKHUTH CaMe JI0 JePEB-TYCCHUIIb.

KuarouoBi cinoBa: metpuunuii rpad, AepeBo, BHcsdYa BepIlMHA, BHYTPIIIHS BepIInHA, pedpo,
nepeBo-rycennis, piBHsaHES [1TypMa-JIiyBiIIs, MOTEHITIaN, BIACHI 3HAYEHHS, CIIEKTpP, KpaiioBa yMOBa
Heiimana, kpaiioBa ymoBa Jlipixjie, KOpiHb, JaHLIOTOBUI Opi0, MaTpuIsl CyMiIXHOCTi, TOJIOBHA
iAMaTpUIsl, HOPMOBaHUH JlaTIaciaH.
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1 INTRODUCTION

The problem of recovering the shape of a combinatorial graph using the eigenvalues of
its adjacency matrix is described in [1] (Chapter 6) where several examples of co-spectral
graphs are shown.

In quantum graph theory, 1. e. in the theory of quantum mechanical equations considered
on metric graph domains, the problem of recovering the shape of a graph was stated in [2] and
[3]. It was shown in [3] that if the lengths of the edges are non-commensurate then the
spectrum of the spectral Sturm-Liouville problem on a graph with standard (continuity +
Kirchhoff’s at the interior vertices and the Neumann at the pendant vertices) conditions
uniquely determines the shape of this graph.

In [2], it was shown that in case of commensurate lengths of the edges there exist co-
spectral quantum graphs. But even earlier it was shown in [4] that in quantum graphs theory
an important role is played not by adjacency matrix but by the so-called normalized
Laplacian.

A ‘geometric’ Ambarzumian’s theorem was proved in [5]: it was shown that the
spectrum of the Neumann problem with zero potential on the graph P2, i. e. on a finite
interval, uniquely determines the shape of the graph. In [6] it was shown that if the graph is
simple connected equilateral with the number of vertices less or equal 5 and the potentials on
the edges are real L2 functions then the spectrum of the Sturm-Liouville problem with
standard conditions at the vertices uniquely determines the shape of the graph. For trees the
minimal number of vertices in a co-spectral pair is 9 (see [7] and [8]). If the number of
vertices doesn’t exceed 8 then to find the shape of a tree we need just to find in [6] the
characteristic polynomial corresponding to the given spectrum.

In [9] it was shown how to find the shape of a tree using the two spectra: the spectrum of
the Neumann problem and the spectrum of the Dirichlet problem, i. e. the problem in which
the Dirichlet condition is imposed at the root. This method works even in case of large
number of vertices. If the solution is not unique, we can find all the solutions. In [10] it was
shown how to find the shape of a tree using the S-function of the scattering problem on a tree
which consists of an equilateral compact subtree with a lead attached to it. The potential on
the lead was assumed to be zero identically and therefore the Jost-function can be expressed
via the characteristic functions of the Dirichlet and Neumann problems. Thus, this scattering
inverse problem and the spectral inverse problem by two spectra are closely related.

In present paper we show that in case of a caterpillar tree rooted at a pendant vertex of
the stalk (central path) the spectra of the Dirichlet and Neumann problems uniquely determine
the shape of the tree.

In Section 2 we describe the Neumann spectral problem, i.e. the Sturm-Liouville problem
with standard conditions (continuity + Kirchhoff’s at the interior vertices and Neumann at the
pendant vertices). We describe the Dirichlet problem where we impose the Dirichlet condition
at the root (an arbitrary chosen vertex) keeping standard conditions at all the other vertices.
We also we expose known results which we use in the sequel.

In Section 3 we prove a theorem where the fraction of the characteristic polynomial of
the normalized Laplacian of a caterpillar combinatorial tree and the modified characteristic
polynomial of its certain subgraph obtained by deleting the root and the incident edge is
presented as a branched continuous fraction. We prove that in case of a caterpillar tree this
presentation is unique.

In Section 4 using the result of Section 3 we show the procedure of recovering the shape
of a tree using asymptotics of the spectra of the Neumann and Dirichlet problems.
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2 STATEMENT OF THE PROBLEM AND AUXILIARY RESULTS

Definition 2.1, [11] A combinatorial caterpillar tree is a tree in which all the vertices are
within distance 1 of a central path (stalk).

An example of a caterpillar tree is presented on Fig. 1.

Let 7 be a metric equilateral caterpillar graph with p vertices and g = p—1 edges each of
the length /. Let v; > v, > ...—> v, be the stalk of the graph (the longest path). It means that

the degree d (v,)=d(v,)=1.

Fig. 1. An example of caterpillar tree

We choose the vertex v, as the root and direct all the edges away from the root.

Let us describe the Neumann spectral problem on this tree. We consider the Sturm-
Liouville equations on the edges

_yA',-'+qj(x)yj:/1yj, j=12,....g, (1)

where ¢, € L, (0, 1) are real.

If an edge e; is incident with a pendant vertex which is not the root then we impose the

Neumann condition

yi(1)=0. (2)
at the pendant vertex. At each interior vertex we impose the continuity conditions
y;(1)=2.(0), (3)

for the incoming into v, edge e, and for all ¢, outgoing from v,, and the Kirchhoff’s
conditions

yi(l)=2,7:(0), (4)

where the sum is taken over all edges e, outgoing from v,. At the root we impose the
Neumann condition:

»(0)=0. (5)
The above conditions (continuity +Kirchhoff’s or Neumann) we call standard.
In the sequel, if the potentials are the same on all the edges, we omit the index in ¢, and

Y, The following theorem adopted for trees can be found as Theorem 5.2 in [6] but it

originates from [4].

D. Kaliuzhnyi-Verbovetskyi, V. Pivovarchik
https://doi.org/10.31650/2618-0650-2023-5-1-14-24 17




Mexanika Ta MareMarudHi merogd / % V/1/2023
Mechanics and mathematical methods Crop. 14-24/ Page 14-24

Theorem 2.1 Let 7 be a tree with p >2. Assume that all edges have the same length 1

and the same potentials symmetric with respect to the midpoints of the edges
(q(I—x)=q(x)).Then the spectrum of problem (1)—(5) coincides with the set of zeros of the

function

oy (1) = s(NA,Dy (c(NA,D),

where y(z)=(1-2")"y(2),
v (z)=det(—zD + A).

Here A is the adjacency matrix of 7 in which the first row and the first column
correspond to v,

D =diag(d(v,),d(v)),..,d(v,,)),

d(v,) 1s the degree of the vertex v,, s(\/z,x) and c(\/zl) are the solutions of the Sturm-
Liouville equation on the edges satisfying conditions s(ﬁ, 0) =s'(\/z, 0)-1=0 and
c(\2,0)—1=c'(\2,0).

Now we consider the Dirichlet problem on the same caterpillar tree. We impose the
Dirichlet condition at vy:

»1(0)=0 (6)
for the edge incident with v,.

By the Dirichlet problem we mean the problem which consists of equations (1)—(4) and
(6).

Denote by T the tree obtained by removing the root in the tree 7T together with the
incident edge. Let A4 be the adjacency matrix of T,i.e.the principal submatrix of 4 obtained
by deleting the first row and the first column of 4, let D be the principal submatrix of D
obtained by deleting the first row and the first column of D.

We consider the polynomial defined by

v (z) = det(-zD + A).

Theorem 6.4.2 of [12] adapted to the case a tree with the Dirichlet condition at one of the
vertices is as follows
Theorem 2.2 Let T be a tree with at least two edges rooted at a pendant vertex v, . Let the

Dirichlet condition be imposed at the root and the standard conditions at all other vertices.
Assume that all edges have the same length 1 and the same potentials symmetric with respect
to the midpoints of the edges (g(/ —x)=¢g(x)). Then the spectrum of problem (1)—(4), (6)

coincides with the set of zeros of the characteristic function
Pp(A) =p(c(NA.D).
It is clear that
0, (A) = det(—c(N1,1)D + A)

is the characteristic function of the Dirichlet problem (1) - (4), (6) on the initial tree T.
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3 MAIN RESULTS

The following theorem was proved in [9].

Theorem 3.1. Let be an equilateral tree. Then the function y/(z)/ l/A/(z) can be presented

as a branched continued fraction. The coefficients before +z and —z correspond to the degrees
of the vertices. The beginning fragment

mo 1
I

f=1 me_...

of the expansion means that the vertex v, is connected by edges with m, vertices v;,v,,...,v,, .
A fragment

4 1
e TE—
= —m,z + z

fe=1 mi’kZ T ees

means that there are there are r vertices of degrees m,,m,,...,m, each having one incoming
edgeand m, —1,m, —1,...,m —1outgoing edges.
A fragment

m
s E—
z

at the end of a branch of the continued fraction means m edges ending at pendant vertices.
This theorem applied to a caterpillar tree rooted and one of its pendant vertices gives.
Corollary 3.2. Let T be a caterpillar tree rooted at v,, one of the ends of the stalk. Then

the fraction y(z) / (//;(Z) can be presented as

V@ _ ., 1 , ™
w(z) I -2 1
! z m, -2 1
m,z —

z ~m,, —1

where {l,m,,m,,...,m_,,1} are the degrees of stalk vertices.

Theorem 3.3. If the fraction y(z) / l//;(Z) can be expanded into continued fraction of the
form (7) with integers m, >2 for i=1,2,...,r-1 then there exists a unique tree which is a
caterpillar tree rooted atv, with the degrees of the vertices on the stalk d(v,)=d(v,)=1 and
dv)=m, for i=1,2,...,r-1.

Proof. The coefficient m, is uniquely determined as

Then the coefficient m, is uniquely determined as
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-1
m, =lim| - ZAW—(Z)+Z2 -m |2 =m+2 ],
o v(2)

we continue this procedure and obtain all m,. On each stage of this procedure we face the
Diophantine equation

m;—1
ZL:mZ. -2+ 1

k=1 1y m

with respect to integer unknowns n, >1. Since

1
m—2<m —2+——<m -1,
m;,
we conclude that equation possesses a unique up to permutations solution
m=n=.=n,,=1n,,=m,. QED.

Example. Let y(z)=-1202" +269z° —189z° +40z and w(z)=120z° —245z* +1562> -30.
Then

= z =—Z+ 7 > .
w(z) 1202° —245z* +156z° -30 5, ~80z° +1062" ~30
247> -332° +10z

y(z) _ N 242> -332° +10z 1

Since
3<@<4,
24
we present the fraction as
Ve, -
l//(Z) SZ_E_ 82 _72 52_7_—2
z 23z-33z2+10 z 3Z_l2z -10
8z —7z
Since
1<£<2
8
we arrive at
v@o_ L L
z 1 4z*-3 z 1 1
3z———— 3z———
z 8z2°-7z Z 5, Z
4z -3
and finally
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A T
y(z) 5z———
z 1 1
3z—————
z 1
2z— 3
4z ——
z

Judging by this continued fraction we conclude that if y(z) =—-120z" +269z° —189z° + 40z
and (z) =1202° —245z* +1562> —30 then the corresponding tree is the that of Fig.1.

4 RECOVERING THE SHAPE OF A QUANTUM TREE BY TWO SPECTRA

Now we are ready to recover the shape of a caterpillar tree. Using the asymptotics of the
spectrum of the Neumann problem we can find the function w(z) (up to a constant factor).
Let us show it.

By Theorem 2.1 in case of g;(x)=0for all j, the spectrum of problem (1)-(5) can be

2g-1

presented as the union of subsequences {Zk}le = U {Z: )}‘,’;l with the following asymptotics
i=1

v = M+%arccosai fori=2,3,...,p-1, keN,
7155) = —27;k —%arccosamzﬂ. fori=p,ptl,...,2p-3, ke N,
\/71;]) = ”(kl_l) forke N,

where ¢, =1<@, <..<a, | <, =1are the zeros of y(z2).
By Theorem 5.4 in [13] we obtain that there exists a positive constant C such that
‘lk —Z,j ‘<C where A, are eigenvalues of problem (1)-(5) with L,(0,/) potentials on the

edges.
Theorem 4.1. Let 7 be an equilateral caterpillar tree with p vertices and with real

potentials g;(x) € L,(0,/) on the edges. Then the spectrum of problem (1)-(5) can be
2g-1

presented as the union of subsequences {4}, = | J {4}, with the following asymptotics
i=1

JAD = M+larccosa+0 1 fori=2,3,...,p-1, keN,
‘ I ; k

k—0 l

- 2k 1 1
@ _ __ - 1= -
¢S] larccosa_p+2+i+0(k) fori=p,ptl,...,2p-3, ke N,
S = ZED ol L) o ke,
k—o l k

where ¢, =1<@, <..<a, | <, =1are the zeros of y(z2).

By Theorem 2.2 in case of ¢,(x) =0 for all j, the eigenvalues of problem (1)-(4), (6) can
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2g .
. ~ o ~(0). 0 . . .
be presented as the union of subsequences {vi},_, = U {vi },_, with the following asymptotics
i=1

\lljg) = M+%arccosﬁi i=1,2,....,p-1, ke N,

k— l

\/;g) = ﬁ—%arccos i=p,p+1,..., 2p-2, ke N.

koo l —p+1+i

Again using Theorem 5.4 in [3] we obtain that there exists a positive constant C such that
‘vk —17; ‘ < C where 4, are eigenvalues of problem (1)-(4), (6) with L,(0,/) potentials on the

edges.
Theorem 4.2. Let 7 be an equilateral caterpillar tree with p vertices and with real
potentials ¢,(x) € L,(0,/) on the edges. Then the spectrum of problem (1)-(4), (6) can be
2g-1

presented as the union of subsequences {v,},_, = U {v"1*  with the following asymptotics
i=1

, 2 -1 1 1
v = MJr—arccos,BnLO —| i=1,2,...,p-1, ke N,
k—o / / ! k
, 2k 1 1
vz, 7 e pﬂﬂ+0(ﬁj i=p,p+1,..., 2p-2, ke N,

where {8} are the zeros of y(z).

According to Theorems 4.1 and 4.2 using the two spectra {4, },_,,{v, };_, we can find the

sets of zeros of the numerator and denominator of the rational function w(z) / l/A/(z) . Thus, this
function is uniquely determined if we take into account that (7) implies

im 22—y,

Z—>®0 ZW ( Z)

Expanding y/(z)/ l/A/(z) into continued fraction (7) we find the shape of our caterpillar
tree.

The plots of the changing values 4> and r° of the squared equatorial and axial
component of the angular velocity vector of the rigid body are constructed and represented in
two cases.

In the first case (Figs. 1,2) J, =1, 4A'=5.1, B'=5, in the second case (Figs. 3, 4)

J,=3, 4=13, B'=1.

5 CONCLUSIONS

As it was mentioned in the introduction that in general the spectrum of a Sturm-Liouville
spectral problem on a simple connected equilateral graph does not determine uniquely the
shape of the graph. We don’t know whether two spectra of such problems with different
conditions on the same graph uniquely determine the shape of the graph. However, we
describe a class of trees (caterpillar trees) for which the two spectra uniquely determine the
shape of a graph. We also give an algorithm of recovering the shape of a caterpillar tree.
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